Novel View Synthesis (NVS) from sparse views remains a core challenge in 3D reconstruction, typically suffering from overfitting, geometric distortion, and incomplete scene recovery due to limited multi-view constraints. Although 3D Gaussian Splatting (3DGS) enables real-time, high-fidelity rendering, it suffers from floating artifacts and structural inconsistencies under sparse-input settings. To address these issues, we propose DWGS, a novel unified framework that enhances 3DGS for sparse-view synthesis by integrating robust structural cues, virtual view constraints, and occluded region completion. Our approach introduces three principal contributions: a Hybrid-Loss Depth Estimation module that leverages dense matching priors with reprojection, point propagation, and smoothness constraints to enforce multi-view consistency; a Bidirectional Warping Virtual View Synthesis method generates virtual training views to impose stronger geometric and photometric constraints; and an Occlusion-Aware Reconstruction component that utilizes depth-difference mask and a learning-based inpainting model to recover obscured regions. Extensive experiments on standard benchmarks (LLFF, Blender, and DTU) show that DWGS achieves a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while retaining real-time inference capabilities.
翻译:暂无翻译