The exploitation of graph structures is the key to effectively learning representations of nodes that preserve useful information in graphs. A remarkable property of graph is that a latent hierarchical grouping of nodes exists in a global perspective, where each node manifests its membership to a specific group based on the context composed by its neighboring nodes. Most prior works ignore such latent groups and nodes' membership to different groups, not to mention the hierarchy, when modeling the neighborhood structure. Thus, they fall short of delivering a comprehensive understanding of the nodes under different contexts in a graph. In this paper, we propose a novel hierarchical attentive membership model for graph embedding, where the latent memberships for each node are dynamically discovered based on its neighboring context. Both group-level and individual-level attentions are performed when aggregating neighboring states to generate node embeddings. We introduce structural constraints to explicitly regularize the inferred memberships of each node, such that a well-defined hierarchical grouping structure is captured. The proposed model outperformed a set of state-of-the-art graph embedding solutions on node classification and link prediction tasks in a variety of graphs including citation networks and social networks. Qualitative evaluations visualize the learned node embeddings along with the inferred memberships, which proved the concept of membership hierarchy and enables explainable embedding learning in graphs.


翻译:图表结构的利用是有效学习保存图表中有用信息的节点的表示方式的关键。 图表的一个显著属性是,从全球角度看,每个节点的潜在分级组合以相邻节点构成的特定群体。 大多数先前的工作忽略了这些潜在群体和节点成员构成的不同群体, 更别提在模拟周边结构时的等级结构。 因此, 它们无法在一个图表中对不同背景下的节点提供全面理解。 在本文中, 我们提出一个新的分级注意成员构成模式, 用于图形嵌入, 每个节点的潜在成员是根据其相邻背景动态地发现的。 在集合邻近国家以生成节点嵌入时, 无论是群体一级还是个人层面的注意力都得到了体现。 我们引入了结构性限制, 以明确规范每个节点的推断成员构成, 从而可以捕捉到定义明确的分级结构结构结构。 拟议的模型比一套关于节点分类的州- 图表嵌入式解决方案要优于一套, 将每个节点的潜在成员构成以其相邻环境为基础发现。 团体级别和个别层次层次的层次任务, 能够将各种图表化结构化结构化的组织结构化网络和结构化解释进化, 并解释进化成各种图表, 。

9
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
图表示学习Graph Embedding综述
AINLP
32+阅读 · 2020年5月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
448+阅读 · 2019年4月30日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2018年2月4日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
相关资讯
图表示学习Graph Embedding综述
AINLP
32+阅读 · 2020年5月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
448+阅读 · 2019年4月30日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员