Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in $\mathcal{P}(\Rd)$ into another must be the gradient of a convex function. To exploit that result, [Makkuva+ 2020, Korotin+2020] consider maps $T=\nabla f_\theta$, where $f_\theta$ is an input convex neural network (ICNN), as defined by Amos+2017, and fit $\theta$ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on $\theta$; the need to approximate the conjugate of $f_\theta$; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost $c$ and a reference measure $\rho$, we introduce a regularizer, the Monge gap $\mathcal{M}^c_{\rho}(T)$ of a map $T$. That gap quantifies how far a map $T$ deviates from the ideal properties we expect from a $c$-OT map. In practice, we drop all architecture requirements for $T$ and simply minimize a distance (e.g., the Sinkhorn divergence) between $T\sharp\mu$ and $\nu$, regularized by $\mathcal{M}^c_\rho(T)$. We study $\mathcal{M}^c_{\rho}$, and show how our simple pipeline outperforms significantly other baselines in practice.


翻译:优化运输( OT) 理论已被用于机器学习, 研究和描述能够将概率测量有效推向另一个目标的地图。 最近的工作从Brenier 的理论中得到启发, 该理论指出, 当地面成本为平方- 欧几里德距离时, “ 最佳” 地图将持续测量值在$mathcal{P} (\Rd) 中进行, 必须是 convex 函数的梯度。 要利用这一结果, [Makkuva+ 2020, Korotin+ 220] 考虑绘制 $( 美元) $( Tnabla f ⁇ theta$ ) 的地图。 其中, $( 美元) 定期引入一个输入convex 神经网络( ICNNN), 由 Amos +2017 定义, 将 $( 美元) 美元与 SGDD 相匹配。 尽管它们的数学优度, 将OT 地图与 ICN 值匹配, 但对于 $( $( 美元) 美元) 和 美元( 美元) 美元( 美元) 美元) 直径解算(美元) 直径解算) 成本( 和 直径解算) 的地图( 成本( 成本( ) 成本( ) 直径) 和 直径方) 直径方) 根基) 根基) 问题,,,, 直径方( 我们算) 至一个结果( 直方( 直方) 至一个( 直方) 直径方( 直方) 直方) 直方( 直方) 直方( 直方) 直方) 直方) 直方) 直方) 直方) 直方) 直方( 根和( 直方) 直方(我们方) 直方) 根基) 直方) 根和直方( 直方) 直方) 直方) 根和直方(直方(直方) 根和直方) 直方) 直方) 根和直方( 直方( 根方) 根和直方)

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员