Graph parameters such as the clique number, the chromatic number, and the independence number are central in many areas, ranging from computer networks to linguistics to computational neuroscience to social networks. In particular, the chromatic number of a graph (i.e., the smallest number of colors needed to color all vertices such that no two adjacent vertices are of the same color) can be applied in solving practical tasks as diverse as pattern matching, scheduling jobs to machines, allocating registers in compiler optimization, and even solving Sudoku puzzles. Typically, however, the underlying graphs are subject to (often minor) changes. To make these applications of graph parameters robust, it is important to know which graphs are stable for them in the sense that adding or deleting single edges or vertices does not change them. We initiate the study of stability of graphs for such parameters in terms of their computational complexity. We show that, for various central graph parameters, the problem of determining whether or not a given graph is stable is complete for \Theta_2^p, a well-known complexity class in the second level of the polynomial hierarchy, which is also known as "parallel access to NP."


翻译:圆形数、 色体数和独立数等图形参数在许多领域是核心, 从计算机网络到语言网络到语言学到计算神经科学到社交网络, 在许多领域都是核心。 特别是, 图表的色数( 例如, 显示所有脊椎所需的最小颜色数量, 因而没有两个相邻的脊椎是相同颜色的) 可用于解决各种实际任务, 例如模式匹配、 将工作安排到机器、 在编译器优化中分配记录器, 甚至解析数拼图。 但是, 通常, 底图会( 通常是轻微的) 变化。 要使图形参数的这些应用变得坚固, 重要的是要知道图形中哪些图形是稳定的, 因为添加或删除单一边缘或脊椎不会改变它们。 我们从计算复杂性的角度开始研究这些参数的图形稳定性。 我们显示, 对于各种中央图形参数, 确定某一图表是否稳定的问题对于\ The_ 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2020年12月5日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
159+阅读 · 2020年11月13日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
243+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月17日
Arxiv
0+阅读 · 2021年2月16日
Arxiv
0+阅读 · 2021年2月13日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员