Recently, a special kind of graph, i.e., supernet, which allows two nodes connected by multi-choice edges, has exhibited its power in neural architecture search (NAS) by searching for better architectures for computer vision (CV) and natural language processing (NLP) tasks. In this paper, we discover that the design of such discrete architectures also appears in many other important learning tasks, e.g., logical chain inference in knowledge graphs (KGs) and meta-path discovery in heterogeneous information networks (HINs). Thus, we are motivated to generalize the supernet search problem on a broader horizon. However, none of the existing works are effective since the supernet topology is highly task-dependent and diverse. To address this issue, we propose to tensorize the supernet, i.e., unify the subgraph search problems by a tensor formulation and encode the topology inside the supernet by a tensor network. We further propose an efficient algorithm that admits both stochastic and deterministic objectives to solve the search problem. Finally, we perform extensive experiments on diverse learning tasks, i.e., architecture design for CV, logic inference for KG, and meta-path discovery for HIN. Empirical results demonstrate that our method leads to better performance and architectures.


翻译:最近,一种特殊的图表,即超级网,允许通过多选择边缘连接两个节点,通过寻找更好的计算机视觉和自然语言处理(NLP)任务架构,在神经结构搜索(NAS)中展示了它的力量。在本文中,我们发现这种离散结构的设计也出现在许多其他重要的学习任务中,例如,知识图形(KGs)中的逻辑链推理和不同信息网络(HINs)中的元病发现。因此,我们有动机在更广的视野上推广超级网络搜索问题。然而,由于超级网络的地形高度依赖任务和多样性,现有作品中没有任何一项是有效的。为了解决这个问题,我们建议用高压公式来拉动超级网络,即将子系统搜索问题统一起来,并将超级网络中的顶部发现编码成一个高压网络。我们进一步建议一种有效的算法,既承认求知性和确定性目标,又能解决搜索问题。最后,我们为了在多样化的C型结构中进行广泛的逻辑实验,我们用高压方法来展示了高压的模型。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
自动化机器学习(AutoML)文献/工具/项目资源大列表分享
深度学习与NLP
6+阅读 · 2019年9月2日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月1日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
VIP会员
相关资讯
自动化机器学习(AutoML)文献/工具/项目资源大列表分享
深度学习与NLP
6+阅读 · 2019年9月2日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员