In this paper, the commensurate fractional-order variant of an Hopfield neuronal network is analyzed. The system is integrated with the ABM method for fractional-order equations. Beside the standard stability analysis of equilibria, the divergence of fractional order is proposed to determine the instability of the equilibria. The bifurcation diagrams versus the fractional order, and versus one parameter, reveal a strange phenomenon suggesting that the bifurcation branches generated by initial conditions outside neighborhoods of unstable equilibria are spurious sets although they look similar with those generated by initial conditions close to the equilibria. These spurious sets look ``delayed'' in the considered bifurcation scenario. Once the integration step-size is reduced, the spurious branches maintain their shapes but tend to the branches obtained from initial condition within neighborhoods of equilibria. While the spurious branches move once the integration step size reduces, the branches generated by the initial conditions near the equilibria maintain their positions in the considered bifurcation space. This phenomenon does not depend on the integration-time interval, and repeats in the parameter bifurcation space.
翻译:本文分析了Hopfield神经神经网络的相应分序变量。 该系统与分序方程式的反弹道导弹方法相融合。 在对平衡的标准稳定性分析之外, 提出分序的差异, 以确定平衡的不稳定性。 双形图相对于分序, 相对一个参数, 揭示出一种奇怪的现象, 表明由不稳定的平衡区附近初始条件产生的两极分系是虚幻的, 尽管它们看起来与接近平衡区的初步条件产生的分系相似。 这些假的分系看起来“ delayed ” 。 这些假的分系在深思的双形假设中看起来是“delayed ” 。 一旦整合的分系缩小, 虚构的分系将保持其形状, 倾向于在平衡区附近初始条件的分系。 在整合阶段缩小后, 刺激的分系会移动, 而初始条件在接近平衡区附近产生的分系则保持其在考虑的双形空间中的位置。 这种现象并不取决于集成时间间隔, 并在参数间重复 。