Typical leg exoskeletons employ open-loop kinematic chains with motors placed directly on movable joints; while this design offers flexibility, it leads to increased costs and heightened control complexity due to the high number of degrees of freedom. The use of heavy servo-motors to handle torque in active joints results in complex and bulky designs, as highlighted in existing literature. In this study, we introduced a novel synthesis method with analytical solutions provided for synthesizing lower-limb exoskeleton. Additionally, we have incorporated multicriteria optimization by six designing criteria. As a result, we offer several mechanisms, comprising only six links, well-suited to the human anatomical structure, exhibit superior trajectory accuracy, efficient force transmission, satisfactory step height, and having internal transfer segment of the foot.
翻译:暂无翻译