Reliability is one of the major design criteria in Cyber-Physical Systems (CPSs). This is because of the existence of some critical applications in CPSs and their failure is catastrophic. Therefore, employing strong error detection and correction mechanisms in CPSs is inevitable. CPSs are composed of a variety of units, including sensors, networks, and microcontrollers. Each of these units is probable to be in a faulty state at any time and the occurred fault can result in erroneous output. The fault may cause the units of CPS to malfunction and eventually crash. Traditional fault-tolerant approaches include redundancy time, hardware, information, and/or software. However, these approaches impose significant overheads besides their low error coverage, which limits their applicability. In addition, the interval between error occurrence and detection is too long in these approaches. In this paper, based on Deep Reinforcement Learning (DRL), a new error detection approach is proposed that not only detects errors with high accuracy but also can perform error detection at the moment due to very low inference time. The proposed approach can categorize different types of errors from normal data and predict whether the system will fail. The evaluation results illustrate that the proposed approach has improved more than 2x in terms of accuracy and more than 5x in terms of inference time compared to other approaches.


翻译:可靠性是网络物理系统(CPS)的主要设计标准之一。这是因为CPS中存在一些关键应用,而且其故障是灾难性的。因此,在CPS中使用强烈的错误探测和校正机制是不可避免的。CPS由各种单位组成,包括传感器、网络和微控制器。这些单位在任何时候都有可能处于错误状态,发生错误可能导致错误产出。错误可能导致CPS单位发生故障并最终崩溃。传统的错误容忍方法包括冗余时间、硬件、信息和/或软件。然而,这些方法除了低误差覆盖范围之外,还造成大量间接费用,限制了其适用性。此外,在这种方法中,出错和探测之间的间隔过长。在本文中,根据深度强化学习(DRL),提出了新的错误探测方法,不仅能发现错误高度准确性,而且能够在极低的推算时间内发现错误。拟议的方法可以对正常数据、硬件、信息和/或软件进行分类不同种类的错误,并预测系统是否比其他方法更准确性要高。在5号方法中,评估的结果比其他方法的精确性要好。在2号中比其他方法改进。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
27+阅读 · 2023年2月10日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
15+阅读 · 2018年6月23日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员