Reconstructing high-quality magnetic resonance images (MRI) from undersampled raw data is of great interest from both technical and clinical point of views. To this date, however, it is still a mathematically and computationally challenging problem due to its severe ill-posedness, resulting from the highly undersampled data leading to significantly missing information. Whilst a number of techniques have been presented to improve image reconstruction, they only account for spatio-temporal regularisation, which shows its limitations in several relevant scenarios including dynamic data. In this work, we propose a new mathematical model for the reconstruction of high-quality medical MRI from few measurements. Our proposed approach combines - \textit{in a multi-task and hybrid model} - the traditional compressed sensing formulation for the reconstruction of dynamic MRI with motion compensation by learning an optical flow approximation. More precisely, we propose to encode the dynamics in the form of an optical flow model that is sparsely represented over a learned dictionary. This has the advantage that ground truth data is not required in the training of the optical flow term. Furthermore, we present an efficient optimisation scheme to tackle the non-convex problem based on an alternating splitting method. We demonstrate the potentials of our approach through an extensive set of numerical results using different datasets and acceleration factors. Our combined approach reaches and outperforms several state of the art techniques. Finally, we show the ability of our technique to transfer phantom based knowledge to real datasets.


翻译:重塑未经充分取样的原始数据中的高质量磁共振图像(MRI),在技术和临床观点中都引起极大的兴趣。然而,到今天为止,它仍然是一个数学和计算上具有挑战性的问题,因为其严重的弊端在于其严重的弊端,其起因是大量未充分取样的数据,导致信息严重缺失。虽然已经提出了许多技术来改进图像重建,但它们只是说明空间时序调节,这显示出它在若干相关情景中的局限性,包括动态数据。在这项工作中,我们提出了一个新的数学模型,用于从少数测量中重建高质量的医疗元共振。我们提议的方法将多任务和混合模型* —— 用于重建动态磁共振动的传统的压缩感应配方程式,通过学习光学流的近距离来补偿。更确切地说,我们提议以光学流模型的形式对动态进行编码,该模型在包括动态数据动态数据流术语的培训中显示出它的局限性。我们提出的新的数学模型结合了多种计量方法,我们提出了一种高效地将数据转换成一个基于不同数据的方法,我们最后选择了一种基于数据加速度的方法,通过不同的计算方法来解决我们各种数据流学的方法。

0
下载
关闭预览

相关内容

3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
103+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度学习目标检测算法综述
AI研习社
25+阅读 · 2019年2月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
E3D: Event-Based 3D Shape Reconstruction
Arxiv
0+阅读 · 2020年12月10日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度学习目标检测算法综述
AI研习社
25+阅读 · 2019年2月1日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员