Triangulated meshes have become ubiquitous discrete-surface representations. In this paper we address the problem of how to maintain the manifold properties of a surface while it undergoes strong deformations that may cause topological changes. We introduce a new self-intersection removal algorithm, TransforMesh, and we propose a mesh evolution framework based on this algorithm. Numerous shape modelling applications use surface evolution in order to improve shape properties, such as appearance or accuracy. Both explicit and implicit representations can be considered for that purpose. However, explicit mesh representations, while allowing for accurate surface modelling, suffer from the inherent difficulty of reliably dealing with self-intersections and topological changes such as merges and splits. As a consequence, a majority of methods rely on implicit representations of surfaces, e.g. level-sets, that naturally overcome these issues. Nevertheless, these methods are based on volumetric discretizations, which introduce an unwanted precision-complexity trade-off. The method that we propose handles topological changes in a robust manner and removes self intersections, thus overcoming the traditional limitations of mesh-based approaches. To illustrate the effectiveness of TransforMesh, we describe two challenging applications, namely surface morphing and 3-D reconstruction.


翻译:在本文中,我们探讨了如何在表面发生可能引发地形变化的强烈变形时如何保持表面的多重特性的问题。我们采用了一种新的自我间分离算法(TransforMesh),并根据这一算法提出了网状演进框架。许多形状建模应用利用表面演化来改进形状特性,例如外观或准确性。为此目的,可以考虑明示和隐含的表述方式。但是,明确的网状表达方式虽然允许精确的表面建模,但却在可靠地处理可能引发地形变化的自我相互作用和地形变化(例如合并和分裂)方面存在着内在的困难。结果,大多数方法都依赖于表面的隐含表达方式(例如水平设置),从而自然克服了这些问题。然而,这些方法的基础是体积分解,从而引入了不必要的精确和兼容性交易。我们提出的方法以稳健的方式处理表面变化,并消除了自我交叉,从而克服了基于表面的合并和分裂性变化方法的传统局限性,从而克服了介面方法(即,我们描述了具有挑战性地貌的)的两种应用。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
53+阅读 · 2020年8月16日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
53+阅读 · 2020年8月16日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员