We introduce the tree distance, a new distance measure on graphs. The tree distance can be computed in polynomial time with standard methods from convex optimization. It is based on the notion of fractional isomorphism, a characterization based on a natural system of linear equations whose integer solutions correspond to graph isomorphism. By results of Tinhofer (1986, 1991) and Dvo\v{r}\'ak (2010), two graphs G and H are fractionally isomorphic if and only if, for every tree T, the number of homomorphisms from T to G equals the corresponding number from T to H, which means that the tree distance of G and H is zero. Our main result is that this correspondence between the equivalence relations "fractional isomorphism" and "equal tree homomorphism densities" can be extended to a correspondence between the associated distance measures. Our result is inspired by a similar result due to Lov\'asz and Szegedy (2006) and Borgs, Chayes, Lov\'asz, S\'os, and Vesztergombi (2008) that connects the cut distance of graphs to their homomorphism densities (over all graphs), which is a fundamental theorem in the theory of graph limits. We also introduce the path distance of graphs and take the corresponding result of Dell, Grohe, and Rattan (2018) for exact path homomorphism counts to an approximate level. Our results answer an open question of Grohe (2020). We establish our main results by generalizing our definitions to graphons as this allows us to apply techniques from functional analysis. We prove the fairly general statement that, for every "reasonably" defined graphon pseudometric, an exact correspondence to homomorphism densities can be turned into an approximate one. We also provide an example of a distance measure that violates this reasonableness condition. This incidentally answers an open question of Greb\'ik and Rocha (2021).


翻译:我们引入树距离, 在图形上引入新的距离测量。 树距离可以以多式时间计算, 标准的方法从 convex 优化。 它基于分数异形概念, 以直线方程式的自然系统特征为基础, 整数方程式的整数解决方案与图形异形相对。 由 Tinhofer( 1986, 1991) 和 Dvo\v{r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
37+阅读 · 2020年8月22日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The 2021 Image Similarity Dataset and Challenge
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员