Level of Detail (LoD) is a fundamental technique in real-time computer graphics for managing the rendering costs of complex scenes while preserving visual fidelity. Traditionally, LoD is implemented using discrete levels (DLoD), where multiple, distinct versions of a model are swapped out at different distances. This long-standing paradigm, however, suffers from two major drawbacks: it requires significant storage for multiple model copies and causes jarring visual ``popping" artifacts during transitions, degrading the user experience. We argue that the explicit, primitive-based nature of the emerging 3D Gaussian Splatting (3DGS) technique enables a more ideal paradigm: Continuous LoD (CLoD). A CLoD approach facilitates smooth, seamless quality scaling within a single, unified model, thereby circumventing the core problems of DLOD. To this end, we introduce CLoD-GS, a framework that integrates a continuous LoD mechanism directly into a 3DGS representation. Our method introduces a learnable, distance-dependent decay parameter for each Gaussian primitive, which dynamically adjusts its opacity based on viewpoint proximity. This allows for the progressive and smooth filtering of less significant primitives, effectively creating a continuous spectrum of detail within one model. To train this model to be robust across all distances, we introduce a virtual distance scaling mechanism and a novel coarse-to-fine training strategy with rendered point count regularization. Our approach not only eliminates the storage overhead and visual artifacts of discrete methods but also reduces the primitive count and memory footprint of the final model. Extensive experiments demonstrate that CLoD-GS achieves smooth, quality-scalable rendering from a single model, delivering high-fidelity results across a wide range of performance targets.
翻译:暂无翻译