We introduce an experimental design that admits precise control over an inescapable trade-off between covariate balance and robustness. The design is specified by a robustness parameter that bounds the worst-case mean squared error of an estimator of the average treatment effect. Subject to the experimenter's desired level of robustness, the design aims to simultaneously balance all linear functions of potentially many covariates. The achieved level of balance is better than previously known possible, considerably better than what a fully random assignment would produce, and close to optimal given the desired level of robustness. We show that the mean squared error of the estimator is bounded by the minimum of the loss function of an implicit ridge regression of the potential outcomes on the covariates. The estimator does not itself conduct covariate adjustment, so one can interpret the approach as regression adjustment by design. Finally, we provide non-asymptotic tail bounds for the estimator, which facilitate the construction of conservative confidence intervals that are valid in finite samples.


翻译:我们引入了一种实验性设计, 允许精确控制无法避免的共变平衡和稳健性之间的权衡。 设计由稳健性参数指定, 该参数将平均处理效果估计值的最差情况平均正方形错误捆绑在一起。 根据实验者所期望的稳健度水平, 设计的目的是同时平衡潜在多个共变差的所有线性功能。 实现的平衡水平比以前所知道的要好得多, 比完全随机分配所产生的平衡要好得多, 并且接近于理想的稳健度水平。 我们显示, 估计值的平均正方形错误与共变差潜在结果隐含的脊脊回归损失功能最小值相连接。 估计值本身并不进行共变调整, 因此可以将这一方法解释为设计回归调整。 最后, 我们为估量器提供了非随机的尾圈, 这有助于构建在有限样本中有效的保守信任度间隔。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月27日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员