Bayesian experimental design (BED) aims at designing an experiment to maximize the information gathering from the collected data. The optimal design is usually achieved by maximizing the mutual information (MI) between the data and the model parameters. When the analytical expression of the MI is unavailable, e.g., having implicit models with intractable data distributions, a neural network-based lower bound of the MI was recently proposed and a gradient ascent method was used to maximize the lower bound. However, the approach in Kleinegesse et al., 2020 requires a pathwise sampling path to compute the gradient of the MI lower bound with respect to the design variables, and such a pathwise sampling path is usually inaccessible for implicit models. In this work, we propose a hybrid gradient approach that leverages recent advances in variational MI estimator and evolution strategies (ES) combined with black-box stochastic gradient ascent (SGA) to maximize the MI lower bound. This allows the design process to be achieved through a unified scalable procedure for implicit models without sampling path gradients. Several experiments demonstrate that our approach significantly improves the scalability of BED for implicit models in high-dimensional design space.
翻译:Bayesian实验设计(BED)旨在设计一个实验,以便从所收集的数据中最大限度地收集信息。最佳设计通常是通过尽量扩大数据和模型参数之间的相互信息(MI)来实现的。当MI的分析表达方式不存在时,例如,由于具有数据分布不易的隐含模型,最近提出了一个以神经网络为基础的下层模块,并采用了梯度梯度梯度方法,以最大限度地增加低层模块。然而,在Kleneegesse等人(Klenegesse等人(2020年)中,采用的方法需要一个路径顺路的取样路径,以计算MI下层在设计变量方面的梯度,而这种路径顺路的取样路径通常无法为隐含模型所利用。在这项工作中,我们提出了一种混合梯度方法,即利用移动式MI测算仪和演进战略(ES)中的最新进展,加上黑盒相变异梯度梯度梯度梯度梯度梯度梯度梯度,以尽量扩大MI的下层。这样就可以通过一个统一的可缩度程序实现设计过程,而无需取样路径梯度梯度模型的梯度梯度。一些实验表明我们的方法大大改进了高空间设计中隐形模型的缩模型的可伸缩度。