Bayesian experimental design (BED) aims at designing an experiment to maximize the information gathering from the collected data. The optimal design is usually achieved by maximizing the mutual information (MI) between the data and the model parameters. When the analytical expression of the MI is unavailable, e.g., having implicit models with intractable data distributions, a neural network-based lower bound of the MI was recently proposed and a gradient ascent method was used to maximize the lower bound. However, the approach in Kleinegesse et al., 2020 requires a pathwise sampling path to compute the gradient of the MI lower bound with respect to the design variables, and such a pathwise sampling path is usually inaccessible for implicit models. In this work, we propose a hybrid gradient approach that leverages recent advances in variational MI estimator and evolution strategies (ES) combined with black-box stochastic gradient ascent (SGA) to maximize the MI lower bound. This allows the design process to be achieved through a unified scalable procedure for implicit models without sampling path gradients. Several experiments demonstrate that our approach significantly improves the scalability of BED for implicit models in high-dimensional design space.


翻译:Bayesian实验设计(BED)旨在设计一个实验,以便从所收集的数据中最大限度地收集信息。最佳设计通常是通过尽量扩大数据和模型参数之间的相互信息(MI)来实现的。当MI的分析表达方式不存在时,例如,由于具有数据分布不易的隐含模型,最近提出了一个以神经网络为基础的下层模块,并采用了梯度梯度梯度方法,以最大限度地增加低层模块。然而,在Kleneegesse等人(Klenegesse等人(2020年)中,采用的方法需要一个路径顺路的取样路径,以计算MI下层在设计变量方面的梯度,而这种路径顺路的取样路径通常无法为隐含模型所利用。在这项工作中,我们提出了一种混合梯度方法,即利用移动式MI测算仪和演进战略(ES)中的最新进展,加上黑盒相变异梯度梯度梯度梯度梯度梯度梯度梯度,以尽量扩大MI的下层。这样就可以通过一个统一的可缩度程序实现设计过程,而无需取样路径梯度梯度模型的梯度梯度。一些实验表明我们的方法大大改进了高空间设计中隐形模型的缩模型的可伸缩度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2020年6月16日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员