In this paper, we present new image segmentation methods based on hidden Markov random fields (HMRFs) and cuckoo search (CS) variants. HMRFs model the segmentation problem as a minimization of an energy function. CS algorithm is one of the recent powerful optimization techniques. Therefore, five variants of the CS algorithm are used to compute a solution. Through tests, we conduct a study to choose the CS variant with parameters that give good results (execution time and quality of segmentation). CS variants are evaluated and compared with non-destructive testing (NDT) images using a misclassification error (ME) criterion.
翻译:在本文中,我们根据隐藏的 Markov 随机字段( HMRFs) 和 cuckoo 搜索变量( CS) 展示新的图像分解方法。 HMRFs 将分解问题模型作为能源函数最小化的模型。 CS 算法是最近最强的优化技术之一。 因此, CS 算法的五个变量被用于计算解决方案。 通过测试,我们进行了一项研究,以选择 CS 变量,其中的参数可以产生良好的效果( 执行时间和质量分解)。 CS 变量被评估,并与使用错误分类错误( ME) 标准的非破坏性测试图像进行比较。