High-throughput screening (HTS) is a well-established technology that rapidly and efficiently screens thousands of chemicals for potential toxicity. Massive testing using HTS primarily aims to differentiate active vs inactive chemicals for different types of biological endpoints. However, even using high-throughput technology, it is not feasible to test all possible combinations of chemicals and assay endpoints, resulting in a majority of missing combinations. Our goal is to derive posterior probabilities of activity for each chemical by assay endpoint combination, addressing the sparsity of HTS data. We propose a Bayesian hierarchical framework, which borrows information across different chemicals and assay endpoints in a low-dimensional latent space. This framework facilitates out-of-sample prediction of bioactivity potential for new chemicals not yet tested. Furthermore, this paper makes a novel attempt in toxicology to simultaneously model heteroscedastic errors as well as a nonparametric mean function. It leads to a broader definition of activity whose need has been suggested by toxicologists. Simulation studies demonstrate that our approach shows superior performance with more realistic inferences on activity than current standard methods. Application to an HTS data set identifies chemicals that are most likely active for two disease outcomes: neurodevelopmental disorders and obesity. Code is available on Github.


翻译:高通量筛选(HTS)是一种成熟的技术,它迅速有效地筛选了数千种化学品,使其具有潜在的毒性。使用高通量测试主要是为了区分不同类型生物终点的活性化学物和不活动化学物。然而,即使使用高通量技术,也不可能测试所有可能的化学品和化验终点组合,造成大多数缺失的组合。我们的目标是通过检测端点组合,为每种化学品得出后继或活动概率,解决HTS数据的广度问题。我们提议一个巴耶斯等级框架,在低维潜层空间中借取不同化学品和试验端点之间的信息。这个框架有助于对尚未测试的新化学品的生物活动潜力作出全面抽样预测。此外,本文在毒理学方面作了新的尝试,同时模拟过敏误差以及非参数性平均功能。它导致对需要由毒理学家建议的活动作出更广泛的定义。模拟研究表明,我们的方法显示,不同化学品之间的超强性性性能,在低维度潜潜潜层空间中,最现实性的活动是两种活动的结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
76+阅读 · 2021年3月16日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员