In recent years, generative artificial intelligence (GenAI) has demonstrated remarkable capabilities in high-stakes domains such as molecular science. However, challenges related to the verifiability and structural privacy of its outputs remain largely unresolved. This paper focuses on the task of molecular toxicity repair. It proposes a structure-private verification framework - ToxiEval-ZKP - which, for the first time, introduces zero-knowledge proof (ZKP) mechanisms into the evaluation process of this task. The system enables model developers to demonstrate to external verifiers that the generated molecules meet multidimensional toxicity repair criteria, without revealing the molecular structures themselves. To this end, we design a general-purpose circuit compatible with both classification and regression tasks, incorporating evaluation logic, Poseidon-based commitment hashing, and a nullifier-based replay prevention mechanism to build a complete end-to-end ZK verification system. Experimental results demonstrate that ToxiEval-ZKP facilitates adequate validation under complete structural invisibility, offering strong circuit efficiency, security, and adaptability, thereby opening up a novel paradigm for trustworthy evaluation in generative scientific tasks.
翻译:暂无翻译