Compression aims to reduce the size of an input, while maintaining its relevant properties. For multi-parameter persistent homology, compression is a necessary step in any computational pipeline, since standard constructions lead to large inputs, and computational tasks in this area tend to be expensive. We propose two compression methods for chain complexes of free 2-parameter persistence modules. The first method extends the multi-chunk algorithm for one-parameter persistent homology, returning the smallest chain complex among all the ones quasi-isomorphic to the input. The second method produces minimal presentations of the homology of the input; it is based on an algorithm of Lesnick and Wright, but incorporates several improvements that lead to dramatic performance gains. The two methods are complementary, and can be combined to compute minimal presentations for complexes with millions of generators in a few seconds. The methods have been implemented, and the software is publicly available. We report on experimental evaluations, which demonstrate substantial improvements in performance compared to previously available compression strategies.


翻译:对于多参数的持久性同质学,压缩是任何计算管道中的必要步骤,因为标准构造导致大量投入,而这一领域的计算任务往往费用昂贵。我们为自由的2度持久性模块的链状综合体提出了两种压缩方法。第一种方法扩展了单参数持久性同质学的多整英法算法,将所有准同质体中最小的链状综合体返回到输入中。第二种方法生成了最小的输入同质性的表述;它以Lesnick和Right的算法为基础,但包含了若干改进,从而带来显著的性能收益。这两种方法是相辅相成的,可以在几秒钟内对数百万发电机的复杂体进行最小的计算。这些方法已经实施,软件是公开的。我们报告了实验性评估情况,这些评估表明与以往的压缩战略相比,业绩有了很大的改进。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月23日
Graph Pruning for Model Compression
Arxiv
1+阅读 · 2021年9月23日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员