Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The fundamental idea of CL-based recommendation models is to maximize the consistency between representations learned from different graph augmentations of the user-item bipartite graph. In such a self-supervised manner, CL-based recommendation models are expected to extract general features from the raw data to tackle the data sparsity issue. Despite the effectiveness of this paradigm, we still have no clue what underlies the performance gains. In this paper, we first reveal that CL enhances recommendation through endowing the model with the ability to learn more evenly distributed user/item representations, which can implicitly alleviate the pervasive popularity bias and promote long-tail items. Meanwhile, we find that the graph augmentations, which were considered a necessity in prior studies, are relatively unreliable and less significant in CL-based recommendation. On top of these findings, we put forward an eXtremely Simple Graph Contrastive Learning method (XSimGCL) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to create views for CL. A comprehensive experimental study on three large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code is released at https://github.com/Coder-Yu/SELFRec.


翻译:以 CL 为基础的建议模型的基本想法是最大限度地提高从用户-项目双部分图的不同图形放大图中得到的表述的一致性。同时,我们发现,以CL 为基础的建议模型以自我监督的方式从原始数据中提取一般特征,以解决数据宽度问题。尽管这一模式具有效力,但我们仍没有任何线索来说明绩效增益的依据。在本文件中,我们首先表明,CL通过赋予模型以更均衡分布的用户/项目表达方式来强化建议,从而能够学习更加均衡分布的用户/项目表达方式,这可以隐含地减轻普遍受欢迎偏差,促进长尾项目。与此同时,我们发现,以CLL为基础的建议中认为有必要的图形增强部分相对不可靠,在基于CL的建议中不那么重要。我们提出了一种extremely简单简单的图形对比学习方法(XimGCL),它抛弃了无效的图形增强方式,而是使用一个简单而有效的基于噪音的种子增强度的图像增强能力,从而创建了CL 快速的模型。一个在高清晰度的模型中,它提出的一个快速的模型化的模型分析方法可以展示它。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年6月27日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
13+阅读 · 2018年4月18日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员