Face detector frequently confronts extreme scale variance challenge. The famous solutions are Multi-scale training, Data-anchor-sampling and Random crop strategy. In this paper, we indicate 2 significant elements to resolve extreme scale variance problem by investigating the difference among the previous solutions, including the fore-ground and back-ground information of an image and the scale information. However, current excellent solutions can only utilize the former information while neglecting to absorb the latter one effectively. In order to help the detector utilize the scale information efficiently, we analyze the relationship between the detector performance and the scale distribution of the training data. Based on this analysis, we propose a Selective Scale Enhancement (SSE) strategy which can assimilate these two information efficiently and simultaneously. Finally, our method achieves state-of-the-art detection performance on all common face detection benchmarks, including AFW, PASCAL face, FDDB and Wider Face datasets. Note that our result achieves six champions on the Wider Face dataset.
翻译:面部探测器经常面临极端规模差异的挑战。 著名的解决方案是多级培训、 数据锁定抽样和随机作物战略。 在本文中,我们通过调查以往解决方案之间的差异,包括图像的地表和地表信息以及比例信息的差异,指出解决极端规模差异问题的两个重要要素。 然而,目前出色的解决方案只能利用前一种信息,而忽视后一种信息的有效吸收。 为了帮助检测者高效利用规模信息,我们分析了培训数据的检测性能和比例分布之间的关系。 根据这一分析,我们提出了一个选择性规模增强战略,可以有效和同时吸收这两种信息。最后,我们的方法在所有共同的面部检测基准(包括AFW、PACAL脸、FDB和大脸数据集)上都取得了最先进的检测性能。 请注意,我们的成果在大脸数据集上取得了六位冠军。