This article derives closed-form parametric formulas for the Minkowski sums of convex bodies in d-dimensional Euclidean space with boundaries that are smooth and have all positive sectional curvatures at every point. Under these conditions, there is a unique relationship between the position of each boundary point and the surface normal. The main results are presented as two theorems. The first theorem directly parameterizes the Minkowski sums using the unit normal vector at each surface point. Although simple to express mathematically, such a parameterization is not always practical to obtain computationally. Therefore, the second theorem derives a more useful parametric closed-form expression using the gradient that is not normalized. In the special case of two ellipsoids, the proposed expressions are identical to those derived previously using geometric interpretations. In order to examine the results, numerical validations and comparisons of the Minkowski sums between two superquadric bodies are conducted. Applications to generate configuration space obstacles in motion planning problems and to improve optimization-based collision detection algorithms are introduced and demonstrated.


翻译:文章为二维欧几里德空间的Minkowski convex 体积积生成了封闭式参数公式,其边界平滑,每个点都有正的部位曲线。 在这样的条件下,每个边界点的位置与表面正常度之间有着独特的关系。 主要结果以两个理论形式呈现。 第一个理论在每一表面点使用单位正向矢量直接参数将Minkowski 体积参数化。 虽然数学上简单易言,但这种参数化并非总能以计算方式获得。 因此,第二个理论用非正常的梯度产生一个更有用的参数封闭式表达式。 在两个子线性的特殊情况下,提议的表达式与以前使用几何解释得出的表达式相同。 为了检查结果,对两个超赤道体之间的Minkowski 数校准和比较进行了数字验证和比较。 引入并演示了用于在运动规划问题中制造空间配置障碍和改进基于优化碰撞探测的算法的应用。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年12月2日
Inferred successor maps for better transfer learning
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员