Transformer based architectures have become de-facto models used for a range of Natural Language Processing tasks. In particular, the BERT based models achieved significant accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. However, BERT based models have a prohibitive memory footprint and latency. As a result, deploying BERT based models in resource constrained environments has become a challenging task. In this work, we perform an extensive analysis of fine-tuned BERT models using second order Hessian information, and we use our results to propose a novel method for quantizing BERT models to ultra low precision. In particular, we propose a new group-wise quantization scheme, and we use a Hessian based mix-precision method to compress the model further. We extensively test our proposed method on BERT downstream tasks of SST-2, MNLI, CoNLL-03, and SQuAD. We can achieve comparable performance to baseline with at most $2.3\%$ performance degradation, even with ultra-low precision quantization down to 2 bits, corresponding up to $13\times$ compression of the model parameters, and up to $4\times$ compression of the embedding table as well as activations. Among all tasks, we observed the highest performance loss for BERT fine-tuned on SQuAD. By probing into the Hessian based analysis as well as visualization, we show that this is related to the fact that current training/fine-tuning strategy of BERT does not converge for SQuAD.

3
下载
关闭预览

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。

The advent of deep neural networks pre-trained via language modeling tasks has spurred a number of successful applications in natural language processing. This work explores one such popular model, BERT, in the context of document ranking. We propose two variants, called monoBERT and duoBERT, that formulate the ranking problem as pointwise and pairwise classification, respectively. These two models are arranged in a multi-stage ranking architecture to form an end-to-end search system. One major advantage of this design is the ability to trade off quality against latency by controlling the admission of candidates into each pipeline stage, and by doing so, we are able to find operating points that offer a good balance between these two competing metrics. On two large-scale datasets, MS MARCO and TREC CAR, experiments show that our model produces results that are either at or comparable to the state of the art. Ablation studies show the contributions of each component and characterize the latency/quality tradeoff space.

1
5
下载
预览

BERT-based architectures currently give state-of-the-art performance on many NLP tasks, but little is known about the exact mechanisms that contribute to its success. In the current work, we focus on the interpretation of self-attention, which is one of the fundamental underlying components of BERT. Using a subset of GLUE tasks and a set of handcrafted features-of-interest, we propose the methodology and carry out a qualitative and quantitative analysis of the information encoded by the individual BERT's heads. Our findings suggest that there is a limited set of attention patterns that are repeated across different heads, indicating the overall model overparametrization. While different heads consistently use the same attention patterns, they have varying impact on performance across different tasks. We show that manually disabling attention in certain heads leads to a performance improvement over the regular fine-tuned BERT models.

0
4
下载
预览

Bidirectional Encoder Representations from Transformers (BERT) reach state-of-the-art results in a variety of Natural Language Processing tasks. However, understanding of their internal functioning is still insufficient and unsatisfactory. In order to better understand BERT and other Transformer-based models, we present a layer-wise analysis of BERT's hidden states. Unlike previous research, which mainly focuses on explaining Transformer models by their attention weights, we argue that hidden states contain equally valuable information. Specifically, our analysis focuses on models fine-tuned on the task of Question Answering (QA) as an example of a complex downstream task. We inspect how QA models transform token vectors in order to find the correct answer. To this end, we apply a set of general and QA-specific probing tasks that reveal the information stored in each representation layer. Our qualitative analysis of hidden state visualizations provides additional insights into BERT's reasoning process. Our results show that the transformations within BERT go through phases that are related to traditional pipeline tasks. The system can therefore implicitly incorporate task-specific information into its token representations. Furthermore, our analysis reveals that fine-tuning has little impact on the models' semantic abilities and that prediction errors can be recognized in the vector representations of even early layers.

0
3
下载
预览

Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fill-in-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-the-art pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https://github.com/facebookresearch/LAMA.

0
5
下载
预览

Learning general representations of text is a fundamental problem for many natural language understanding (NLU) tasks. Previously, researchers have proposed to use language model pre-training and multi-task learning to learn robust representations. However, these methods can achieve sub-optimal performance in low-resource scenarios. Inspired by the recent success of optimization-based meta-learning algorithms, in this paper, we explore the model-agnostic meta-learning algorithm (MAML) and its variants for low-resource NLU tasks. We validate our methods on the GLUE benchmark and show that our proposed models can outperform several strong baselines. We further empirically demonstrate that the learned representations can be adapted to new tasks efficiently and effectively.

0
5
下载
预览

Lexical simplification (LS) aims to replace complex words in a given sentence with their simpler alternatives of equivalent meaning. Recently unsupervised lexical simplification approaches only rely on the complex word itself regardless of the given sentence to generate candidate substitutions, which will inevitably produce a large number of spurious candidates. We present a simple BERT-based LS approach that makes use of the pre-trained unsupervised deep bidirectional representations BERT. We feed the given sentence masked the complex word into the masking language model of BERT to generate candidate substitutions. By considering the whole sentence, the generated simpler alternatives are easier to hold cohesion and coherence of a sentence. Experimental results show that our approach obtains obvious improvement on standard LS benchmark.

0
6
下载
预览

Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.

0
11
下载
预览

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

0
11
下载
预览

This technical note describes a new baseline for the Natural Questions. Our model is based on BERT and reduces the gap between the model F1 scores reported in the original dataset paper and the human upper bound by 30% and 50% relative for the long and short answer tasks respectively. This baseline has been submitted to the official NQ leaderboard at ai.google.com/research/NaturalQuestions. Code, preprocessed data and pretrained model are available at https://github.com/google-research/language/tree/master/language/question_answering/bert_joint.

0
6
下载
预览

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

1
5
下载
预览
小贴士
相关论文
Rodrigo Nogueira,Wei Yang,Kyunghyun Cho,Jimmy Lin
5+阅读 · 2019年10月31日
Revealing the Dark Secrets of BERT
Olga Kovaleva,Alexey Romanov,Anna Rogers,Anna Rumshisky
4+阅读 · 2019年9月11日
Betty van Aken,Benjamin Winter,Alexander Löser,Felix A. Gers
3+阅读 · 2019年9月11日
Fabio Petroni,Tim Rocktäschel,Patrick Lewis,Anton Bakhtin,Yuxiang Wu,Alexander H. Miller,Sebastian Riedel
5+阅读 · 2019年9月4日
Zi-Yi Dou,Keyi Yu,Antonios Anastasopoulos
5+阅读 · 2019年8月27日
A Simple BERT-Based Approach for Lexical Simplification
Jipeng Qiang,Yun Li,Yi Zhu,Yunhao Yuan
6+阅读 · 2019年7月16日
X-BERT: eXtreme Multi-label Text Classification with BERT
Wei-Cheng Chang,Hsiang-Fu Yu,Kai Zhong,Yiming Yang,Inderjit Dhillon
11+阅读 · 2019年7月4日
How to Fine-Tune BERT for Text Classification?
Chi Sun,Xipeng Qiu,Yige Xu,Xuanjing Huang
11+阅读 · 2019年5月14日
Chris Alberti,Kenton Lee,Michael Collins
6+阅读 · 2019年3月21日
John Duchi,Hongseok Namkoong
5+阅读 · 2017年12月14日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
39+阅读 · 2019年9月16日
一文详解Google最新NLP模型XLNet
PaperWeekly
16+阅读 · 2019年7月1日
从 one-hot 到 BERT,带你一步步理解 BERT
数说工作室
15+阅读 · 2019年6月25日
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
BERT相关论文、文章和代码资源汇总
AINLP
19+阅读 · 2018年11月17日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top