Developing reinforcement learning algorithms that satisfy safety constraints is becoming increasingly important in real-world applications. In multi-agent reinforcement learning (MARL) settings, policy optimisation with safety awareness is particularly challenging because each individual agent has to not only meet its own safety constraints, but also consider those of others so that their joint behaviour can be guaranteed safe. Despite its importance, the problem of safe multi-agent learning has not been rigorously studied; very few solutions have been proposed, nor a sharable testing environment or benchmarks. To fill these gaps, in this work, we formulate the safe MARL problem as a constrained Markov game and solve it with policy optimisation methods. Our solutions -- Multi-Agent Constrained Policy Optimisation (MACPO) and MAPPO-Lagrangian -- leverage the theories from both constrained policy optimisation and multi-agent trust region learning. Crucially, our methods enjoy theoretical guarantees of both monotonic improvement in reward and satisfaction of safety constraints at every iteration. To examine the effectiveness of our methods, we develop the benchmark suite of Safe Multi-Agent MuJoCo that involves a variety of MARL baselines. Experimental results justify that MACPO/MAPPO-Lagrangian can consistently satisfy safety constraints, meanwhile achieving comparable performance to strong baselines.


翻译:在现实应用中,满足安全限制的强化学习算法正在变得日益重要。在多试剂强化学习(MARL)环境中,政策优化与安全意识特别具有挑战性,因为每个机构不仅要满足自己的安全限制,而且要考虑其他人的共同行为才能保证安全。尽管这一点很重要,安全多试剂学习问题尚未得到严格研究;很少提出解决办法,也没有建立可辨别的测试环境或基准。为了填补这些空白,我们在这项工作中将安全MARL问题发展成一个受限的Markov游戏,并用政策优化方法加以解决。我们的解决办法 -- -- 多试金政策优化(MACPO)和MAPO-Lagrangian -- -- 利用了受限政策优化和多试剂信任区域学习的理论。值得注意的是,我们的方法在理论上得到保证,在每次测试时,在奖励和满足安全限制方面都有单一的改进和满意度。为了检查我们的方法的有效性,我们开发了安全多试科(MAR-MOL)基准套基准,这需要各种可比较的MAL基准。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
11+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
11+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员