Expressive motion planning for Aerial Manipulators (AMs) is essential for tackling complex manipulation tasks, yet achieving coupled trajectory planning adaptive to various tasks remains challenging, especially for those requiring aggressive maneuvers. In this work, we propose a novel whole-body integrated motion planning framework for quadrotor-based AMs that leverages flexible waypoint constraints to achieve versatile manipulation capabilities. These waypoint constraints enable the specification of individual position requirements for either the quadrotor or end-effector, while also accommodating higher-order velocity and orientation constraints for complex manipulation tasks. To implement our framework, we exploit spatio-temporal trajectory characteristics and formulate an optimization problem to generate feasible trajectories for both the quadrotor and manipulator while ensuring collision avoidance considering varying robot configurations, dynamic feasibility, and kinematic feasibility. Furthermore, to enhance the maneuverability for specific tasks, we employ Imitation Learning (IL) to facilitate the optimization process to avoid poor local optima. The effectiveness of our framework is validated through comprehensive simulations and real-world experiments, where we successfully demonstrate nine fundamental manipulation skills across various environments.
翻译:暂无翻译