The efficiency of a Markov sampler based on the underdamped Langevin diffusion is studied for high dimensional targets with convex and smooth potentials. We consider a classical second-order integrator which requires only one gradient computation per iteration. Contrary to previous works on similar samplers, a dimension-free contraction of Wasserstein distances and convergence rate for the total variance distance are proven for the discrete time chain itself. Non-asymptotic Wasserstein and total variation efficiency bounds and concentration inequalities are obtained for both the Metropolis adjusted and unadjusted chains. \nv{In particular, for the unadjusted chain,} in terms of the dimension $d$ and the desired accuracy $\varepsilon$, the Wasserstein efficiency bounds are of order $\sqrt d / \varepsilon$ in the general case, $\sqrt{d/\varepsilon}$ if the Hessian of the potential is Lipschitz, and $d^{1/4}/\sqrt\varepsilon$ in the case of a separable target, in accordance with known results for other kinetic Langevin or HMC schemes.
翻译:基于低印的Langevin扩散率的Markov取样器的效率是针对高维目标研究的,其潜力是精密和光滑的。我们考虑的是传统的二阶集成器,该集成器只需要每迭次一个梯度计算。与以前类似的采样器的工程不同,瓦塞斯坦距离的无维缩缩缩和总差异距离的趋同率被证明适用于离散的时间链本身。如果潜力的赫斯人为利普西茨,则获得非亚麻痹瓦塞林和总变异效率界限和浓度不平等。\ nv{特别是,对于未调整的链条来说,}就尺寸值$($)和预期的精度($)和预期的精度($)而言,瓦塞斯坦效率界限是排序为$(sqrt d/\varepsilon$),对于离散时间链本身来说,如果潜在的赫西茨(Lipschitz)和($d ⁇ 1/4}/srtvarepepsilon$(未调整的链路段),则根据已知的Rebleglegal 计划,则获得其他结果。