The efficiency of a Markov sampler based on the underdamped Langevin diffusion is studied for high dimensional targets with convex and smooth potentials. We consider a classical second-order integrator which requires only one gradient computation per iteration. Contrary to previous works on similar samplers, a dimension-free contraction of Wasserstein distances and convergence rate for the total variance distance are proven for the discrete time chain itself. Non-asymptotic Wasserstein and total variation efficiency bounds and concentration inequalities are obtained for both the Metropolis adjusted and unadjusted chains. \nv{In particular, for the unadjusted chain,} in terms of the dimension $d$ and the desired accuracy $\varepsilon$, the Wasserstein efficiency bounds are of order $\sqrt d / \varepsilon$ in the general case, $\sqrt{d/\varepsilon}$ if the Hessian of the potential is Lipschitz, and $d^{1/4}/\sqrt\varepsilon$ in the case of a separable target, in accordance with known results for other kinetic Langevin or HMC schemes.


翻译:基于低印的Langevin扩散率的Markov取样器的效率是针对高维目标研究的,其潜力是精密和光滑的。我们考虑的是传统的二阶集成器,该集成器只需要每迭次一个梯度计算。与以前类似的采样器的工程不同,瓦塞斯坦距离的无维缩缩缩和总差异距离的趋同率被证明适用于离散的时间链本身。如果潜力的赫斯人为利普西茨,则获得非亚麻痹瓦塞林和总变异效率界限和浓度不平等。\ nv{特别是,对于未调整的链条来说,}就尺寸值$($)和预期的精度($)和预期的精度($)而言,瓦塞斯坦效率界限是排序为$(sqrt d/\varepsilon$),对于离散时间链本身来说,如果潜在的赫西茨(Lipschitz)和($d ⁇ 1/4}/srtvarepepsilon$(未调整的链路段),则根据已知的Rebleglegal 计划,则获得其他结果。

0
下载
关闭预览

相关内容

【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
59+阅读 · 2021年4月15日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月17日
VIP会员
相关VIP内容
【NYU-WESLEY MADDOX】贝叶斯神经网络教程,83页ppt
专知会员服务
59+阅读 · 2021年4月15日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
浅谈贝叶斯和MCMC
AI100
14+阅读 · 2018年6月11日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员