This review article provides an overview of random matrix theory (RMT) with a focus on its growing impact on the formulation and inference of statistical models and methodologies. Emphasizing applications within high-dimensional statistics, we explore key theoretical results from RMT and their role in addressing challenges associated with high-dimensional data. The discussion highlights how advances in RMT have significantly influenced the development of statistical methods, particularly in areas such as covariance matrix inference, principal component analysis (PCA), signal processing, and changepoint detection, demonstrating the close interplay between theory and practice in modern high-dimensional statistical inference.
翻译:暂无翻译