Estimating nested expectations is an important task in computational mathematics and statistics. In this paper we propose a new Monte Carlo method using post-stratification to estimate nested expectations efficiently without taking samples of the inner random variable from the conditional distribution given the outer random variable. This property provides the advantage over many existing methods that it enables us to estimate nested expectations only with a dataset on the pair of the inner and outer variables drawn from the joint distribution. We show an upper bound on the mean squared error of the proposed method under some assumptions. Numerical experiments are conducted to compare our proposed method with several existing methods (nested Monte Carlo method, multilevel Monte Carlo method, and regression-based method), and we see that our proposed method is superior to the compared methods in terms of efficiency and applicability.


翻译:估计嵌套期望是计算数学和统计方面的一项重要任务。 在本文中,我们提议采用一个新的蒙特卡洛方法,使用批准后的方法,有效估计嵌套期望,而不必从外部随机变量的有条件分布中抽取内部随机变量样本。这一属性比许多现有方法的优势在于,它只能用从联合分布中提取的内外部变量的数据集来估计嵌套期望。我们在某些假设中显示了拟议方法的平均正方形错误的上限。我们进行了数字实验,将我们提议的方法与几种现有方法(取消的蒙特卡洛方法、多层次的蒙特卡洛方法和回归法)进行比较,我们看到,我们提议的方法在效率和适用性方面优于比较方法。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年5月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年5月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
4+阅读 · 2017年11月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员