This paper introduces a shoebox room simulator able to systematically generate synthetic datasets of binaural room impulse responses (BRIRs) given an arbitrary set of head-related transfer functions (HRTFs). The evaluation of machine hearing algorithms frequently requires BRIR datasets in order to simulate the acoustics of any environment. However, currently available solutions typically consider only HRTFs measured on dummy heads, which poorly characterize the high variability in spatial sound perception. Our solution allows to integrate a room impulse response (RIR) simulator with different HRTF sets represented in Spatially Oriented Format for Acoustics (SOFA). The source code and the compiled binaries for different operating systems allow to both advanced and non-expert users to benefit from our toolbox, see https://github.com/spatialaudiotools/sofamyroom/ .


翻译:本文介绍一个鞋盒室模拟器,能够系统地生成二进制室脉冲反应的合成数据集(BRIRs),因为有一套与头有关的任意转移功能(HRTFs),对机器听力算法的评估经常需要BRIR数据集来模拟任何环境的声学,然而,目前可用的解决方案通常只考虑在假头上测量的HRTFs,这与空间声音感知的高度变化性不相符。我们的解决方案允许将室脉冲反应模拟器(RIR)与在以空间为主的声学格式(SOFA)中代表的不同HRTF数据集结合。不同操作系统的源代码和汇编的二进制允许先进和非专家用户从我们的工具箱中受益,见https://github.comspatialaudiotools/sofyroom/。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
29+阅读 · 2021年6月4日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
71+阅读 · 2020年10月24日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年5月10日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员