Interactive Task Learning (ITL) is an emerging research agenda that studies the design of complex intelligent robots that can acquire new knowledge through natural human teacher-robot learner interactions. ITL methods are particularly useful for designing intelligent robots whose behavior can be adapted by humans collaborating with them. Various research communities are contributing methods for ITL and a large subset of this research is \emph{robot-centered} with a focus on developing algorithms that can learn online, quickly. This paper studies the ITL problem from a \emph{human-centered} perspective to provide guidance for robot design so that human teachers can naturally teach ITL robots. In this paper, we present 1) a qualitative bidirectional analysis of an interactive teaching study (N=10) through which we characterize various aspects of actions intended and executed by human teachers when teaching a robot; 2) an in-depth discussion of the teaching approach employed by two participants to understand the need for personal adaptation to individual teaching styles; and 3) requirements for ITL robot design based on our analyses and informed by a computational theory of collaborative interactions, SharedPlans.
翻译:互动任务学习(ITL)是一个新兴的研究议程,它研究能够通过自然的人类教师-机器人学习者互动获得新知识的复杂智能机器人的设计。 国际交易日志的方法对于设计智能机器人特别有用,这些机器人的行为可以由与它们合作的人类加以调整。 各种研究界正在为国际交易日志提供方法,而这一研究的一大分支是 emph{robot-centent},重点是开发能够迅速在线学习的算法。 本文从 emph{human-cent} 的角度研究国际交易日志问题,以便为机器人设计提供指导,使人类教师能够自然地教授国际交易日志机器人。 在本文件中,我们提出1)对交互式教学研究(N=10)进行定性双向分析,我们通过该研究描述人类教师在教授机器人时打算和执行的行动的各个方面; 2) 深入讨论两个参与者采用的教学方法,以了解个人适应个人教学风格的需要; 3) 国际交易日志机器人设计要求,以我们的分析为基础,并参照协作互动的计算理论,共享计划。