Many physical and mathematical models involve random fields in their input data. Examples are ordinary differential equations, partial differential equations and integro--differential equations with uncertainties in the coefficient functions described by random fields. They also play a dominant role in problems in machine learning. In this article, we do not assume to have knowledge of the moments or expansion terms of the random fields but we instead have only given discretized samples for them. We thus model some measurement process for this discrete information and then approximate the covariance operator of the original random field. Of course, the true covariance operator is of infinite rank and hence we can not assume to get an accurate approximation from a finite number of spatially discretized observations. On the other hand, smoothness of the true (unknown) covariance function results in effective low rank approximations to the true covariance operator. We derive explicit error estimates that involve the finite rank approximation error of the covariance operator, the Monte-Carlo-type errors for sampling in the stochastic domain and the numerical discretization error in the physical domain. This permits to give sufficient conditions on the three discretization parameters to guarantee that an error below a prescribed accuracy $\varepsilon$ is achieved.


翻译:许多物理和数学模型在输入数据中包含随机字段。 例如普通差异方程、部分差异方程和在随机字段描述的系数函数中具有不确定性的整形差异方程, 随机字段描述的系数函数具有不确定性。 它们也在机器学习问题中起着主导作用。 在本篇文章中, 我们并不假定了解随机字段的时点或扩展条件, 但我们只给它们提供了分解样本。 我们因此为这种离散信息建模某种测量程序, 然后与原始随机字段的常态操作员相近。 当然, 真正的共变操作员级别无限, 因此我们无法假设从空间离散观测的有限数量中获得准确近似。 另一方面, 真实( 未知) 共变异功能的平滑度导致对真实共变域操作员的有效低级近似值。 我们得出明确的错误估计, 涉及常态操作员的定级近差差差, 用于在随机域取样的 Monte-Carlo 型错误, 以及物理域的数值离异化错误。 允许在三个离异参数下设定足够的条件, $ 以保证在正值以下的精确度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
159+阅读 · 2020年11月13日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Top
微信扫码咨询专知VIP会员