In this paper, we introduce and prove asymptotic normality for a new nonparametric estimator of continuous treatment effects. Specifically, we estimate the average dose-response function - the expected value of an outcome of interest at a particular level of the treatment level. We utilize tools from both the double debiased machine learning (DML) and the automatic double machine learning (ADML) literatures to construct our estimator. Our estimator utilizes a novel debiasing method that leads to nice theoretical stability and balancing properties. In simulations our estimator performs well compared to current methods.
翻译:在本文中,我们引入并证明,对于一种新的非对称的持续治疗效应估计值来说,无症状的正常性。具体地说,我们估算了平均剂量-反应功能 -- -- 在治疗水平的某个特定水平上,一个感兴趣的结果的预期值。我们使用双偏差机器学习(DML)和自动双机学习(ADML)文献的工具来构建我们的测算器。我们的测算器使用一种新型的偏差方法,导致良好的理论稳定性和平衡性能。在模拟我们的测算器与当前方法相比运行良好。