Submodular function maximization is a fundamental combinatorial optimization problem with plenty of applications -- including data summarization, influence maximization, and recommendation. In many of these problems, the goal is to find a solution that maximizes the average utility over all users, for each of whom the utility is defined by a monotone submodular function. However, when the population of users is composed of several demographic groups, another critical problem is whether the utility is fairly distributed across different groups. Although the \emph{utility} and \emph{fairness} objectives are both desirable, they might contradict each other, and, to the best of our knowledge, little attention has been paid to optimizing them jointly. In this paper, we propose a new problem called \emph{Bicriteria Submodular Maximization} (BSM) to strike a balance between utility and fairness. Specifically, it requires finding a fixed-size solution to maximize the utility function, subject to the value of the fairness function not being below a threshold. Since BSM is inapproximable within any constant factor in general, we turn our attention to designing instance-dependent approximation schemes. Our algorithmic proposal comprises two methods, with different approximation factors, obtained by converting a BSM instance into other submodular optimization problem instances. Using real-world and synthetic datasets, we showcase applications of our methods in three submodular maximization problems: maximum coverage, influence maximization, and facility location.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Correction of overfitting bias in regression models
Arxiv
0+阅读 · 2023年7月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员