Machine learning (ML) algorithms generate a continuous stream of success stories from various domains and enable many novel applications in safety-critical systems. With the advent of autonomous driving, ML algorithms are being used in the automotive domain, where the applicable functional safety standard is ISO 26262. However, requirements and recommendations provided by ISO 26262 do not cover specific properties of machine learning algorithms. Therefore, specific aspects of ML (e.g., dataset requirements, performance evaluation metrics, lack of interpretability) must be addressed within some work products, which collect documentation resulting from one or more associated requirements and recommendations of ISO 26262. In this paper, we propose how key technical aspects and supporting processes related to development of ML-based systems can be organized according to ISO 26262 phases, sub-phases, and work products. We follow the same approach as in the ISO/PAS 21448 standard, which complements ISO 26262, in order to account for edge cases that can lead to hazards not directly caused by system failure.%, but resulting from functional insufficiencies of the intended functionality or by reasonably foreseeable misuse by persons.
翻译:机器学习(ML)算法从不同领域产生一系列连续的成功经验,使安全临界系统的许多新应用成为可能。随着自动驱动的出现,汽车领域正在使用ML算法,适用的职能安全标准是ISO 262662。然而,ISO 26262提供的要求和建议并不包括机器学习算法的具体特性。因此,ML的具体方面(例如数据集要求、业绩评价指标、缺乏可解释性)必须在一些工作产品中加以处理,这些产品收集了因ISO 2626262的一项或多项相关要求和建议而产生的文件。在本文件中,我们建议如何按照ISO 2626262的阶段、分阶段和工作产品来组织与ML系统开发有关的关键的技术方面和支持过程。我们遵循与ISO/PAS 2148标准相同的方法,该标准补充ISO 262626262626,262, 以便说明并非由于系统故障直接造成的危险,而是由于预期功能的功能不足或人们合理可预见的滥用而造成的边缘情况。