Classical wisdom suggests that estimators should avoid fitting noise to achieve good generalization. In contrast, modern overparameterized models can yield small test error despite interpolating noise -- a phenomenon often called "benign overfitting" or "harmless interpolation". This paper argues that the degree to which interpolation is harmless hinges upon the strength of an estimator's inductive bias, i.e., how heavily the estimator favors solutions with a certain structure: while strong inductive biases prevent harmless interpolation, weak inductive biases can even require fitting noise to generalize well. Our main theoretical result establishes tight non-asymptotic bounds for high-dimensional kernel regression that reflect this phenomenon for convolutional kernels, where the filter size regulates the strength of the inductive bias. We further provide empirical evidence of the same behavior for deep neural networks with varying filter sizes and rotational invariance.


翻译:古老的智慧表明,估计者应该避免适切的噪音,以达到良好的概括化。 相反,现代超分模型尽管有内插噪音,却可能产生小试验错误 -- -- 一种经常被称为“基装过度”或“不协调的内插”的现象。 本文认为,内插无害的程度取决于测算者的感应偏差的强度,即测算者在多大程度上偏爱某种结构的解决方案:强的内导偏差防止无害的内插,而弱的内导偏差甚至需要适当的噪音来加以概括化。我们的主要理论结果为高维内核的回归建立了严格的非防御性界限,反映进化内核的这个现象,即过滤器大小能调节进化偏差的强度。我们进一步为过滤器大小和旋转不均的深神经网络提供了相同行为的实证。</s>

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员