The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence $2$-approximate) matching in $O(n)$ worst-case update time in $n$-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of {\em both} approximation ratio and worst-case update time. Specifically, we give a $(2-\Omega(1))$-approximate algorithm with $O(m^{3/8})=O(n^{3/4})$ worst-case update time in $n$-node, $m$-edge graphs. For sufficiently small constant $\epsilon>0$, no deterministic $(2+\epsilon)$-approximate algorithm with worst-case update time $O(n^{0.99})$ was known. Our second result is the first deterministic $(2+\epsilon)$-approximate weighted matching algorithm with $O_\epsilon(1)\cdot O(\sqrt[4]{m}) = O_\epsilon(1)\cdot O(\sqrt{n})$ worst-case update time. Our main technical contributions are threefold: first, we characterize the tight cases for \emph{kernels}, which are the well-studied matching sparsifiers underlying much of the $(2+\epsilon)$-approximate dynamic matching literature. This characterization, together with multiple ideas -- old and new -- underlies our result for breaking the approximation barrier of $2$. Our second technical contribution is the first example of a dynamic matching algorithm whose running time is improved due to improving the \emph{recourse} of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite matching algorithms as black-box subroutines for dynamic matching in general graphs without incurring the natural $\frac{3}{2}$ factor in the approximation ratio which such approaches naturally incur.


翻译:动态图形中的最大匹配问题在过去几年里得到了很多关注; 获得了大量近似/时间交易, 民俗算法得到了改进, 民俗算法保持了最高( 因而是2美元- 最差) 匹配时间 $(n) 美元, 最差的更新时间为 $ 美元, 美元 - node 图形 。 我们展示了第一个确定性算法, 该算法表现了民俗算法, 其接近率比率和最坏的更新时间 。 具体地说, 我们给出了 $ (2\ Omega(1) ) 的近差价算法, 该算法表现了第一个确定性 美元 美元 美元 (m%3/8} 美元, 最差的更新时间为 美元 美元 美元 美元 。 我们的 Omillionqlational= 美元 美元 美元= 美元 美元 美元- 美元 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 的比 的比 的比 的比 的比 的比 基 的比 的计算, 我们的计算结果, 我们的,, 我们的计算, 的 的 的 的 的, 我们的, 我们的, 我们的计算, 我们的, 我们的第二个算算算算算算算算算算算算算算算算算算算算算算的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
2018-Geoffrey Hinton-深度学习基础
深度学习与NLP
10+阅读 · 2018年9月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年1月30日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
2018-Geoffrey Hinton-深度学习基础
深度学习与NLP
10+阅读 · 2018年9月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
tensorflow LSTM + CTC实现端到端OCR
机器学习研究会
26+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员