Medulloblastoma (MB) is a primary central nervous system tumor and the most common malignant brain cancer among children. Neuropathologists perform microscopic inspection of histopathological tissue slides under a microscope to assess the severity of the tumor. This is a time-consuming task and often infused with observer variability. Recently, pre-trained convolutional neural networks (CNN) have shown promising results for MB subtype classification. Typically, high-resolution images are divided into smaller tiles for classification, while the size of the tiles has not been systematically evaluated. We study the impact of tile size and input strategy and classify the two major histopathological subtypes-Classic and Demoplastic/Nodular. To this end, we use recently proposed EfficientNets and evaluate tiles with increasing size combined with various downsampling scales. Our results demonstrate using large input tiles pixels followed by intermediate downsampling and patch cropping significantly improves MB classification performance. Our top-performing method achieves the AUC-ROC value of 90.90\% compared to 84.53\% using the previous approach with smaller input tiles.
翻译:中中枢神经系统肿瘤和儿童中最常见的恶性脑癌(MB)是一种主要的中枢神经系统肿瘤和最常见的恶性脑癌。神经病理学家在显微镜下对病理组织幻灯片进行显微检查,以评估肿瘤的严重性。这是一项耗时的工作,而且往往会随观察者的变化而渗透。最近,经过预先训练的进化神经神经网络(CNN)显示了对MB亚型分类的可喜结果。通常,高分辨率图像被分成小块进行分类,而瓷砖的大小则没有得到系统的评估。我们研究了瓷砖大小和输入战略的影响,并对两种主要的病理亚型亚型亚型-显性细胞和显性细胞组织进行了分类。为此,我们最近提出了高效网络,并评估了规模越来越大的瓷砖块,并结合了各种降压尺度。我们的结果显示,使用大量投入的砖块等素,随后进行了中期降压和补分裁,从而大大提高了MB分类的性能。我们的顶级方法实现了AUC-ROC的90°值,比84.53 ⁇ 小。