Foundation models pretrained on large-scale natural images are widely adapted to various cross-domain low-resource downstream tasks, benefiting from generalizable and transferable patterns captured by their representations. However, these representations are later found to gradually vanish during finetuning, accompanied by a degradation of model's original generalizability. In this paper, we argue that such tasks can be effectively adapted without sacrificing the benefits of pretrained representations. We approach this by introducing \textit{Representation Invariance FineTuning (RIFT)}, a regularization that maximizes the representation similarity between pretrained and finetuned models by leveraging orthogonal invariance of manifolds in a computationally efficient way. Experiments demonstrate that our method is compatible with mainstream finetuning methods, offering competitive or even enhanced performance and better preservation of the generalizability.
翻译:暂无翻译