Large Language Models (LLMs) enable intelligent multi-robot collaboration but face fundamental trade-offs: declarative methods lack adaptability in dynamic environments, while iterative methods incur prohibitive computational costs that scale poorly with team size and task complexity. In this paper, we propose ELHPlan, a novel framework that introduces Action Chains--sequences of actions explicitly bound to sub-goal intentions--as the fundamental planning primitive. ELHPlan operates via a cyclical process: 1) constructing intention-bound action sequences, 2) proactively validating for conflicts and feasibility, 3) refining issues through targeted mechanisms, and 4) executing validated actions. This design balances adaptability and efficiency by providing sufficient planning horizons while avoiding expensive full re-planning. We further propose comprehensive efficiency metrics, including token consumption and planning time, to more holistically evaluate multi-agent collaboration. Our experiments on benchmark TDW-MAT and C-WAH demonstrate that ELHPlan achieves comparable task success rates while consuming only 24% of the tokens required by state-of-the-art methods. Our research establishes a new efficiency-effectiveness frontier for LLM-based multi-agent planning systems.
翻译:暂无翻译