Recent works show that group equivariance as an inductive bias improves neural network performance for both classification and generation. However, designing group-equivariant neural networks is challenging when the group of interest is large and is unknown. Moreover, inducing equivariance can significantly reduce the number of independent parameters in a network with fixed feature size, affecting its overall performance. We address these problems by proving a new group-theoretic result in the context of equivariant neural networks that shows that a network is equivariant to a large group if and only if it is equivariant to smaller groups from which it is constructed. Using this result, we design a novel fast group equivariant construction algorithm, and a deep Q-learning-based search algorithm in a reduced search space, yielding what we call autoequivariant networks (AENs). AENs find the right balance between equivariance and network size when tested on new benchmark datasets, G-MNIST and G-Fashion-MNIST, obtained via group transformations on MNIST and Fashion-MNIST respectively that we release. Extending these results to group convolutional neural networks, where we optimize between equivariances, augmentations, and network sizes, we find group equivariance to be the most dominating factor in all high-performing GCNNs on several datasets like CIFAR10, SVHN, RotMNIST, ASL, EMNIST, and KMNIST.


翻译:最近的工程显示,群体偏差是一种感化偏差,可以改善分类和生成的神经网络性能。然而,当兴趣群体庞大且未知时,设计群体偏差神经网络具有挑战性。此外,诱发偏差可以大大减少固定特征规模网络中独立参数的数量,影响其总体性能。我们通过证明新的群体理论和网络规模在等差性神经网络背景下存在新的群体理论结果来解决这些问题,这种网络表明,如果而且只有在网络与构建网络的较小群体不等差时,网络才对一个大群体产生异差。我们利用这一结果设计了一个新型的快速群体等差建筑算法,并在一个小的搜索空间中设计了一个基于深度的基于Q学习的搜索算法,产生我们称之为“异差网络”的。当在新的基准数据集、G-MNIST和G-MAM-MISIT中测试出异差和网络规模之间,通过MNIS-Q-QIS-Q-MLIF的集团变异性、我们分别释放的GIS-Q-NAL 和G-NIS-Q-ILAL 和G-ILILIL 的集团之间这些结果,我们分别是这些结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
4+阅读 · 2020年3月27日
Arxiv
7+阅读 · 2018年3月22日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
37+阅读 · 2020年2月21日
专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Top
微信扫码咨询专知VIP会员