Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic minimal spanning tree problems. In brief, we wish to maintain the connected components of the graph under dynamic edge insertions and deletions. In the sequential case, the problem has been well-studied from both theoretical and practical perspectives. However, much less is known about efficient concurrent solutions to this problem. This is the gap we address in this paper. We start from one of the classic data structures used to solve this problem, the Euler Tour Tree. Our first contribution is a non-blocking single-writer implementation of it. We leverage this data structure to obtain the first truly concurrent generalization of dynamic connectivity, which preserves the time complexity of its sequential counterpart, but is also scalable in practice. To achieve this, we rely on three main techniques. The first is to ensure that connectivity queries, which usually dominate real-world workloads, are non-blocking. The second non-trivial technique expands the above idea by making all queries that do not change the connectivity structure non-blocking. The third ingredient is applying fine-grained locking for updating the connected components, which allows operations on disjoint components to occur in parallel. We evaluate the resulting algorithm on various workloads, executing on both real and synthetic graphs. The results show the efficiency of each of the proposed optimizations; the most efficient variant improves the performance of a coarse-grained based implementation on realistic scenarios up to 6x on average and up to 30x when connectivity queries dominate.


翻译:动态连接是一个基本的算法图问题,其动机是社交和通信网络的广泛应用,并用作各种其他算法的构件,例如双连接和动态最小覆盖树状问题。简言之,我们希望在动态边缘插入和删除中保持图形的连接组件。在相继案例中,这个问题从理论和实践角度都得到了很好的研究。然而,对于这一问题的高效并存解决办法,我们所了解的要少得多。这是我们本文中处理的差距。我们从用来解决这一问题的经典数据结构之一,即Euler Tour树开始,我们的第一个贡献是非阻塞的单一作者执行。我们利用这一数据结构来获得动态连接的第一个真正同时的概括,这保留了相继对应方的时间复杂性,但在实践中也是可变换的。为了实现这一目标,我们依靠三个主要技术。首先,确保连接查询,通常以真实世界工作量为主的,是非阻塞的。第二个非三端技术在现实化的逻辑上扩展了上面的精度分析,通过不断更新的精度分析,使得整个连通性结构能够改变整个连通性结构。我们无法将整个连通性运行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
A Heuristic for Direct Product Graph Decomposition
Arxiv
0+阅读 · 2021年7月7日
Neural Computing
Arxiv
0+阅读 · 2021年7月6日
Arxiv
17+阅读 · 2019年3月28日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员