The quality of mesh generation has long been considered a vital aspect in providing engineers with reliable simulation results throughout the history of the Finite Element Method (FEM). The element extraction method, which is currently the most robust method, is used in business software. However, in order to speed up extraction, the approach is done by finding the next element that optimizes a target function, which can result in local mesh of bad quality after many time steps. We provide TreeMesh, a method that uses this method in conjunction with reinforcement learning (also possible with supervised learning) and a novel Monte-Carlo tree search (MCTS) (Coulom(2006), Kocsis and Szepesv\'ari(2006), Browne et~al.(2012)). The algorithm is based on a previously proposed approach (Pan et~al.(2021)). After making many improvements on DRL (algorithm, state-action-reward setting) and adding a MCTS, it outperforms the former work on the same boundary. Furthermore, using tree search, our program reveals much preponderance on seed-density-changing boundaries, which is common on thin-film materials.


翻译:长期以来,人们一直认为网目生成的质量是向工程师提供精密元素法(FEM)整个历史中可靠模拟结果的一个重要方面。元素提取方法目前是最有力的方法,在商业软件中使用。然而,为了加快提取,该方法是通过找到下一个要素来完成,该要素优化了目标功能,在经过许多步骤之后可能导致当地质量差的网格。我们提供了TreeMesh这一方法,该方法结合强化学习(也有可能与监督学习相结合)和新的Monte-Carlo树搜索(Coulom(2006年)、Kocsis和Szeperev\'ari(2006年)、Browne et 和 ~al(2012年))使用。该方法基于先前提议的方法(Pan et ~al. (2021年) ) 。在对DRL(algorithm, State-Action-Reward setting)进行多次改进后,在添加MCTS后,它超越了以前关于同一边界的工作。此外,我们的方案在树搜索中揭示了种子密度基质-file-frimilling-file-file-frimillefile,这是常见的常见。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员