In this paper, we propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for visual object tracking. The dataset consists of 50 videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and possibly train better deep learning architectures (avoiding/reducing augmentation, which may not reflect realistic real world behavior). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further categorize the test sequences with different attributes and present a thorough quantitative and qualitative evaluation. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of most trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long term tracking.

7
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

0
19
下载
预览

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

0
34
下载
预览

Video object segmentation (VOS) aims at pixel-level object tracking given only the annotations in the first frame. Due to the large visual variations of objects in video and the lack of training samples, it remains a difficult task despite the upsurging development of deep learning. Toward solving the VOS problem, we bring in several new insights by the proposed unified framework consisting of object proposal, tracking and segmentation components. The object proposal network transfers objectness information as generic knowledge into VOS; the tracking network identifies the target object from the proposals; and the segmentation network is performed based on the tracking results with a novel dynamic-reference based model adaptation scheme. Extensive experiments have been conducted on the DAVIS'17 dataset and the YouTube-VOS dataset, our method achieves the state-of-the-art performance on several video object segmentation benchmarks. We make the code publicly available at https://github.com/sydney0zq/PTSNet.

0
3
下载
预览

Model update lies at the heart of object tracking.Generally, model update is formulated as an online learning problem where a target model is learned over the online training dataset. Our key innovation is to \emph{learn the online learning algorithm itself using large number of offline videos}, i.e., \emph{learning to update}. The learned updater takes as input the online training dataset and outputs an updated target model. As a first attempt, we design the learned updater based on recurrent neural networks (RNNs) and demonstrate its application in a template-based tracker and a correlation filter-based tracker. Our learned updater consistently improves the base trackers and runs faster than realtime on GPU while requiring small memory footprint during testing. Experiments on standard benchmarks demonstrate that our learned updater outperforms commonly used update baselines including the efficient exponential moving average (EMA)-based update and the well-designed stochastic gradient descent (SGD)-based update. Equipped with our learned updater, the template-based tracker achieves state-of-the-art performance among realtime trackers on GPU.

0
6
下载
预览

We study active object tracking, where a tracker takes as input the visual observation (i.e., frame sequence) and produces the camera control signal (e.g., move forward, turn left, etc.). Conventional methods tackle the tracking and the camera control separately, which is challenging to tune jointly. It also incurs many human efforts for labeling and many expensive trial-and-errors in realworld. To address these issues, we propose, in this paper, an end-to-end solution via deep reinforcement learning, where a ConvNet-LSTM function approximator is adopted for the direct frame-toaction prediction. We further propose an environment augmentation technique and a customized reward function, which are crucial for a successful training. The tracker trained in simulators (ViZDoom, Unreal Engine) shows good generalization in the case of unseen object moving path, unseen object appearance, unseen background, and distracting object. It can restore tracking when occasionally losing the target. With the experiments over the VOT dataset, we also find that the tracking ability, obtained solely from simulators, can potentially transfer to real-world scenarios.

0
3
下载
预览

Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.

0
4
下载
预览

Despite the numerous developments in object tracking, further development of current tracking algorithms is limited by small and mostly saturated datasets. As a matter of fact, data-hungry trackers based on deep-learning currently rely on object detection datasets due to the scarcity of dedicated large-scale tracking datasets. In this work, we present TrackingNet, the first large-scale dataset and benchmark for object tracking in the wild. We provide more than 30K videos with more than 14 million dense bounding box annotations. Our dataset covers a wide selection of object classes in broad and diverse context. By releasing such a large-scale dataset, we expect deep trackers to further improve and generalize. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset. By sequestering the annotation of the test set and providing an online evaluation server, we provide a fair benchmark for future development of object trackers. Deep trackers fine-tuned on a fraction of our dataset improve their performance by up to 1.6% on OTB100 and up to 1.7% on TrackingNet Test. We provide an extensive benchmark on TrackingNet by evaluating more than 20 trackers. Our results suggest that object tracking in the wild is far from being solved.

0
5
下载
预览

In the same vein of discriminative one-shot learning, Siamese networks allow recognizing an object from a single exemplar with the same class label. However, they do not take advantage of the underlying structure of the data and the relationship among the multitude of samples as they only rely on pairs of instances for training. In this paper, we propose a new quadruplet deep network to examine the potential connections among the training instances, aiming to achieve a more powerful representation. We design four shared networks that receive multi-tuple of instances as inputs and are connected by a novel loss function consisting of pair-loss and triplet-loss. According to the similarity metric, we select the most similar and the most dissimilar instances as the positive and negative inputs of triplet loss from each multi-tuple. We show that this scheme improves the training performance. Furthermore, we introduce a new weight layer to automatically select suitable combination weights, which will avoid the conflict between triplet and pair loss leading to worse performance. We evaluate our quadruplet framework by model-free tracking-by-detection of objects from a single initial exemplar in several Visual Object Tracking benchmarks. Our extensive experimental analysis demonstrates that our tracker achieves superior performance with a real-time processing speed of 78 frames-per-second (fps).

0
9
下载
预览

Visual object tracking is an important computer vision problem with numerous real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. In this paper, we aim to extensively review the latest trends and advances in the tracking algorithms and evaluate the robustness of trackers in the presence of noise. The first part of this work comprises a comprehensive survey of recently proposed tracking algorithms. We broadly categorize trackers into correlation filter based trackers and the others as non-correlation filter trackers. Each category is further classified into various types of trackers based on the architecture of the tracking mechanism. In the second part of this work, we experimentally evaluate tracking algorithms for robustness in the presence of additive white Gaussian noise. Multiple levels of additive noise are added to the Object Tracking Benchmark (OTB) 2015, and the precision and success rates of the tracking algorithms are evaluated. Some algorithms suffered more performance degradation than others, which brings to light a previously unexplored aspect of the tracking algorithms. The relative rank of the algorithms based on their performance on benchmark datasets may change in the presence of noise. Our study concludes that no single tracker is able to achieve the same efficiency in the presence of noise as under noise-free conditions; thus, there is a need to include a parameter for robustness to noise when evaluating newly proposed tracking algorithms.

0
9
下载
预览

Discrete correlation filter (DCF) based trackers have shown considerable success in visual object tracking. These trackers often make use of low to mid level features such as histogram of gradients (HoG) and mid-layer activations from convolution neural networks (CNNs). We argue that including semantically higher level information to the tracked features may provide further robustness to challenging cases such as viewpoint changes. Deep salient object detection is one example of such high level features, as it make use of semantic information to highlight the important regions in the given scene. In this work, we propose an improvement over DCF based trackers by combining saliency based and other features based filter responses. This combination is performed with an adaptive weight on the saliency based filter responses, which is automatically selected according to the temporal consistency of visual saliency. We show that our method consistently improves a baseline DCF based tracker especially in challenging cases and performs superior to the state-of-the-art. Our improved tracker operates at 9.3 fps, introducing a small computational burden over the baseline which operates at 11 fps.

0
6
下载
预览
小贴士
相关论文
Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark
Ke Li,Gang Wan,Gong Cheng,Liqiu Meng,Junwei Han
19+阅读 · 2019年9月22日
Deep Learning in Video Multi-Object Tracking: A Survey
Gioele Ciaparrone,Francisco Luque Sánchez,Siham Tabik,Luigi Troiano,Roberto Tagliaferri,Francisco Herrera
34+阅读 · 2019年7月31日
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation
Qiang Zhou,Zilong Huang,Lichao Huang,Yongchao Gong,Han Shen,Chang Huang,Wenyu Liu,Xinggang Wang
3+阅读 · 2019年7月4日
Bi Li,Wenxuan Xie,Wenjun Zeng,Wenyu Liu
6+阅读 · 2018年6月19日
Wenhan Luo,Peng Sun,Fangwei Zhong,Wei Liu,Tong Zhang,Yizhou Wang
3+阅读 · 2018年6月1日
Pengpeng Liang,Yifan Wu,Hu Lu,Liming Wang,Chunyuan Liao,Haibin Ling
4+阅读 · 2018年5月22日
Matthias Müller,Adel Bibi,Silvio Giancola,Salman Al-Subaihi,Bernard Ghanem
5+阅读 · 2018年3月28日
Xingping Dong,Jianbing Shen,Yu Liu,Wenguan Wang,Fatih Porikli
9+阅读 · 2018年3月17日
Mustansar Fiaz,Arif Mahmood,Soon Ki Jung
9+阅读 · 2018年2月14日
Caglar Aytekin,Francesco Cricri,Emre Aksu
6+阅读 · 2018年2月8日
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
31+阅读 · 2019年10月10日
Top