简介:

如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人 工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有 样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的,同时 也给深度学习的攻方提供了新的思路,对如何开展防御提出了新的要求.在介绍对抗样本生成技术的起源和原理的 基础上,对近年来有关对抗样本的研究和文献进行了总结,按照各自的算法原理将经典的生成算法分成两大类——全像素添加扰动和部分像素添加扰动.之后,以目标定向和目标非定向、黑盒测试和白盒测试、肉眼可见和肉眼不可见的二级分类标准进行二次分类.同时,使用 MNIST 数据集对各类代表性的方法进行了实验验证,以探究各种方法的优缺点.最后总结了生成对抗样本所面临的挑战及其可以发展的方向,并就该技术的发展前景进行了探讨.

内容简介:

本文重点对生成对抗样本的已有研究工作进行综述,主要选取了近年来有代表性的或取得比较显著效果的方法进行详细的原理介绍和优缺点分析.按照其生成方式和原理的不同,分为全像素添加扰动和部分像素添 加扰动两类.在此基础上,根据目标是否定向、是否黑盒和是否肉眼可见这 3 个标准进行细分,将各类方法中的 代表性算法在统一数据集(MNIST)上进行测试,验证并分析其优缺点,终总结提出未来的发展前景. 本文第 1 节主要介绍对抗样本的基本概念和基础知识,包括对抗样本本身的定义、其延伸有关的相关概念 以及基本操作流程.第 2 节则指出对抗样本是从深度学习中衍生出来的概念,同时介绍了对抗样本有效性的评估方法.第 3 节则介绍对抗样本的起源,说明了对抗样本的产生契机和原理解释.第 4 节介绍生成对抗样本的发展状况,以全像素添加扰动和部分像素添加扰动两大类进行算法说明,同时总结生成方法中常用的数据集.第 5 节是对第 4 节中代表方法的实验,结合对同一数据集的效果测试来说明各类方法的优缺点.通过这些优缺点,在 第 6 节中讨论对抗样本生成技术面临的挑战和前景预测.

目录:

  • 1 简 介

    • 1.1 样本的定义
    • 1.2 相关概念
    • 1.3 基本操作流程
  • 2 前 传

    • 2.1机器学习在分类问题中的运用
    • 2.2 深度学习在分类问题中的运用
    • 2.3 评估方法
  • 3 起源

    • 3.1 首次发现
    • 3.2 基本原理
  • 4 发 展

    • 4.1 分类方式及代表模型
    • 4.2 常用数据集
  • 5 实验结果对比

  • 6 面临挑战与前景预测

成为VIP会员查看完整内容
0
49

相关内容

浙江大学,简称浙大,坐落于素有“人间天堂”美誉的历史文化名城杭州。前身是1897年创建的求是书院,是中国人自己最早创办的现代高等学府之一,是一所具有悠久历史的教育部直属全国重点大学,985、211工程重点建设高校。据ESI公布的数据,截至2015年9月,浙江大学18个学科进入世界学术机构前1%,居全国高校第二;7个学科进入世界前100位,4个学科进入世界前50位,居全国高校第一。

摘要:近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.本文探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集.最后,对表面缺陷检测的未来发展趋势进行了展望.

成为VIP会员查看完整内容
0
38

摘要:图像分类的应用场景非常广泛,很多场景下难以收集到足够多的数据来训练模型,利用小样本学习进行图像分类可解决训练数据量小的问题.本文对近年来的小样本图像分类算法进行了详细综述,根据不同的建模方式,将现有算法分为卷积神经网络模型和图神经网络模型两大类,其中基于卷积神经网络模型的算法包括四种学习范式:迁移学习、元学习、对偶学习和贝叶斯学习;基于图神经网络模型的算法原本适用于非欧几里得结构数据,但有部分学者将其应用于解决小样本下欧几里得数据的图像分类任务,有关的研究成果目前相对较少.此外,本文汇总了现有文献中出现的数据集并通过实验结果对现有算法的性能进行了比较.最后,讨论了小样本图像分类技术的难点及未来研究趋势.

成为VIP会员查看完整内容
0
88

摘要: 目标检测算法应用广泛,一直是计算机视觉领域备受关注的研究热点。近年来,随着深度学习的发展,3D图像的目标检测研究取得了巨大的突破。与2D目标检测相比,3D目标检测结合了深度信息,能够提供目标的位置、方向和大小等空间场景信息,在自动驾驶和机器人领域发展迅速。文中首先对基于深度学习的2D目标检测算法进行概述;其次根据图像、激光雷达、多传感器等不同数据采集方式,分析目前具有代表性和开创性的3D目标检测算法;结合自动驾驶的应用场景,对比分析不同 3D 目标检测算法的性能、优势和局限性;最后总结了3D目标检测的应用意义以及待解决的问题,并对 3D 目标检测的发展方向和新的挑战进行了讨论和展望。

成为VIP会员查看完整内容
0
66

随着高计算设备的发展,深度神经网络(DNNs)近年来在人工智能(AI)领域得到了广泛的应用。然而,之前的研究表明,DNN在经过策略性修改的样本(称为对抗性样本)面前是脆弱的。这些样本是由一些不易察觉的扰动产生的,但可以欺骗DNN做出错误的预测。受图像DNNs中生成对抗性示例的流行启发,近年来出现了针对文本应用的攻击DNNs的研究工作。然而,现有的图像扰动方法不能直接应用于文本,因为文本数据是离散的。在这篇文章中,我们回顾了针对这一差异的研究工作,并产生了关于DNN的电子对抗实例。我们对这些作品进行了全面的收集、选择、总结、讨论和分析,涵盖了所有相关的信息,使文章自成一体。最后,在文献回顾的基础上,我们提出了进一步的讨论和建议。

成为VIP会员查看完整内容
0
39

深度学习的发明,使得人工智能技术迎来了新的机遇,再次进入了蓬勃发展期。其涉及到的隐私、安全、伦理等问题也日益受到了人们的广泛关注。以对抗样本生成为代表的新技术,直接将人工智能、特别是深度学习模型的脆弱性展示到了人们面前,使得人工智能技术在应用落地时,必须要重视此类问题。本文通过对抗样本生成技术的回顾,从信号层、内容层以及语义层三个层面,白盒攻击与黑盒攻击两个角度,简要介绍了对抗样本生成技术,目的是希望读者能够更好地发现对抗样本的本质,对机器学习模型的健壮性、安全性和可解释性研究有所启发。

成为VIP会员查看完整内容
0
17

【简介】深度神经网络(DNNs)在各项任务上都取得了不俗的表现。然而,最近的研究表明通过对输入进行很小的扰动就可以轻易的骗过DNNs,这被称作对抗式攻击。作为DNNs在图上的扩展,图神经网络(GNNs)也继承了这一缺陷。对手通过修改图中的一些边等操作来改变图的结构可以误导GNNs作出错误的预测。这一漏洞已经引起了人们对在安全领域关键应用中采用GNNs的极大关注,并在近年来引起了越来越多的人的研究兴趣。因此,对目前的图对抗式攻击和反制措施进行一个全面的梳理和回顾是相当有必要的。在这篇综述中,我们对目前的攻击和防御进行了分类,以及回顾了相关表现优异的模型。最后,我们开发了一个具有代表性算法的知识库,该知识库可以使我们进行相关的研究来加深我们对基于图的攻击和防御的理解。

成为VIP会员查看完整内容
0
34

摘要: 随着机器学习技术在生产、生活等各个领域的广泛应用,机器学习算法本身的安全问题也引起越来越多的 关注。基于对抗样本的攻击方法是机器学习算法普遍面临的安全挑战之一。以机器学习的安全性问题为出发点,介 绍了当前机器学习面临的隐私攻击、完整性攻击等安全问题,归纳了目前常见对抗样本生成方法的发展过程及各自 的特点,总结了目前已有的针对对抗样本攻击的防御技术,最后对提高机器学习算法鲁棒性的方法做了进一步的展 望。

作者介绍:

朱清新:1982年1月四川师范大学数学系本科毕业获学士学位。1984年7月北京理工大学应用数学专业毕业获硕士学位。1984年8月起任西南技术物理研究所工程师、副研究员,作为技术骨干参加了国防科工委7712工程项目并获科研成果三等奖。1993年5月渥太华大学应用数学和电子工程系控制论专业毕业获博士学位。1993年5月至1996年3月在渥太华大学电子工程系和加拿大卡尔顿大学计算机学院从事博士后研究并获计算机第二硕士学位。1996年3月至1997年11月任加拿大Nortel公司和OmniMark高级研究员。1998年3月应聘回国到电子科技大学计算机学院工作,1999年6月聘为教授、2001年6月聘为博士生导师。2002年9月至2003年3月赴加拿大蒙特利尔Concordia大学计算机系任高级访问学者。现任电子科技大学计算机学院学术委员会主任,计算运筹学研究室主任。主要研究领域包括:生物信息学、信息检索、计算运筹学与最优化。

张小松: 长江学者特聘教授,国家重点研发计划网络空间安全专项首席科学家, 2017年网络安全优秀人才奖获得者。长期致力于软件安全、网络安全和数据安全领域的研究,成果在应用中取得重要的社会和经济效益,近年来多次获国家和省部级成果奖励,发表包括CCF A类期刊IT、TSE、TIFS在内的学术论文六十余篇,出版了《网络安全协议》、《恶意软件分析与检测》、《软件测试》等专著、教材和译著5部,获授权国际、国内发明专利22项,公开50多项,获软件著作权登记10项。

成为VIP会员查看完整内容
0
19

摘要: 图像内容自动描述是计算机视觉和自然语言处理领域的一个重要任务,在生活娱乐、智慧 交通以及帮助视觉障碍者理解视觉内容等领域有着广泛而重要的应用价值.相比于图像分类和目标 检测等感知任务,图像内容自动描述是一种更高级别、更复杂的认知任务,对帮助分析和理解图像有 着重要的意义.旨在对现有的图像自动描述技术进行全面的综述.讨论图像内容自动描述中常用的数 据集和评价指标,以及现有图像自动描述技术的性能、优点和局限性。

关键词: 图像内容描述;卷积神经网络;循环神经网络;注意力机制;深度学习

成为VIP会员查看完整内容
0
55

摘要 : 零样本图像分类指训练集和测试集在数据的类别上没有交集的情况下进行图像分类 . 该技术 是解决类别标签缺失问题的一种有效手段 , 因此受到了日益广泛的关注 . 自提出此问题至今 , 零样本 图像分类的研究已经大致有十年时间 . 本文系统地对过去十年中零样本图像分类技术的研究进展进行 了综述 , 主要包括以下 4 个方面 . 首先介绍零样本图像分类技术的研究意义及其应用价值 , 然后重点 总结和归纳零样本图像分类的发展过程和研究现状 , 接下来介绍常用的数据集和评价准则 , 以及与零 样本学习相关的技术的区别和联系 , 最后分析有待深入研究的热点与难点问题 , 并对未来的发展趋势 进行了展望 .

关键词: 零样本图像分类 , 属性 , 词向量 , 跨模态映射 , 领域适应学习

成为VIP会员查看完整内容
0
67
小贴士
相关VIP内容
专知会员服务
38+阅读 · 2020年5月31日
专知会员服务
88+阅读 · 2020年5月6日
专知会员服务
66+阅读 · 2020年4月24日
专知会员服务
66+阅读 · 2020年4月23日
专知会员服务
17+阅读 · 2020年4月15日
专知会员服务
34+阅读 · 2020年3月5日
专知会员服务
19+阅读 · 2019年12月13日
 图像内容自动描述技术综述
专知会员服务
55+阅读 · 2019年11月17日
零样本图像分类综述 : 十年进展
专知会员服务
67+阅读 · 2019年11月16日
相关资讯
【综述】生成式对抗网络GAN最新进展综述
专知
40+阅读 · 2019年6月5日
综述 | CVPR2019目标检测方法进展
计算机视觉life
12+阅读 · 2019年4月3日
CVPR2019目标检测方法进展综述
极市平台
44+阅读 · 2019年3月20日
生成对抗网络的研究进展与趋势
中国计算机学会
16+阅读 · 2018年11月14日
计算机视觉方向简介 | 目标检测最新进展总结与展望
计算机视觉life
4+阅读 · 2018年10月28日
Image Captioning 36页最新综述, 161篇参考文献
专知
66+阅读 · 2018年10月23日
相关论文
Sicheng Zhao,Shangfei Wang,Mohammad Soleymani,Dhiraj Joshi,Qiang Ji
7+阅读 · 2019年10月3日
Mohamed Elhoseiny,Mohamed Elfeki
4+阅读 · 2019年4月3日
Transfer Adaptation Learning: A Decade Survey
Lei Zhang
29+阅读 · 2019年3月12日
Yihui He,Xiangyu Zhang,Marios Savvides,Kris Kitani
4+阅读 · 2018年9月23日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
A Survey on Deep Transfer Learning
Chuanqi Tan,Fuchun Sun,Tao Kong,Wenchang Zhang,Chao Yang,Chunfang Liu
10+阅读 · 2018年8月6日
Compositional GAN: Learning Conditional Image Composition
Samaneh Azadi,Deepak Pathak,Sayna Ebrahimi,Trevor Darrell
30+阅读 · 2018年7月19日
Ruoqi Sun,Chen Huang,Jianping Shi,Lizhuang Ma
4+阅读 · 2018年4月24日
Orest Kupyn,Volodymyr Budzan,Mykola Mykhailych,Dmytro Mishkin,Jiri Matas
8+阅读 · 2018年1月16日
Qiang Cui,Shu Wu,Yan Huang,Liang Wang
5+阅读 · 2017年12月7日
Top