《Python机器学习经典实例(影印版 英文版)》这本实用指南提供了近200则完整的攻略,可帮助你解决日常工作中可能遇到的机器学习难题。如果你熟悉Python以及包括pandas和scikit-learn在内的库,那么解决一些特定问题将不在话下,比如数据加载、文本处理、数值数据、模型选择、降维以及诸多其他主题。

  每则攻略中都包含代码,你可以将其复制并粘贴到实验数据集中,以确保代码的确有效。你可以插入、组合、修改这些代码,从而协助构建你自己的应用程序。攻略中还包括相关的讨论,对解决方案给出了解释并提供有意义的上下文。

  《Python机器学习经典实例(影印版 英文版)》在理论和概念之外提供了构造实用机器学习应用所需的具体细节。

https://www.oreilly.com/library/view/machine-learning-with/9781491989371/

成为VIP会员查看完整内容
0
39

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

本书解释了数据科学中至关重要的统计学概念,介绍如何将各种统计方法应用于数据科学。作者以易于理解、浏览和参考的方式,引出统计学中与数据科学相关的关键概念;解释各统计学概念在数据科学中的重要性及有用程度,并给出原因。

统计方法是数据科学的关键部分,但很少有数据科学家有任何正式的统计培训。关于基本统计的课程和书籍很少从数据科学的角度涵盖这个主题。这本实用指南解释了如何将各种统计方法应用到数据科学中,告诉你如何避免它们被误用,并就什么是重要的、什么是不重要的给出建议。

许多数据科学资源包含了统计方法,但缺乏更深层次的统计视角。如果您熟悉R编程语言,并且对统计学有一定的了解,那么本文的快速引用将以一种可访问、可读的格式填补空白。

通过这本书,你会学到:

  • 为什么探索性数据分析是数据科学的一个关键的初步步骤
  • 随机抽样如何在大数据的情况下减少偏差并产生更高质量的数据集
  • 实验设计的原则如何为问题提供明确的答案
  • 如何使用回归估计结果和检测异常
  • 用于预测记录所属类别的关键分类技术
  • 从数据中“学习”的统计机器学习方法
  • 从无标记数据中提取意义的无监督学习方法

https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/

成为VIP会员查看完整内容
0
28

链接:

http://greenteapress.com/wp/think-bayes/

作者:Allen B. Downey

Think Bayes是介绍如何通过编程方法进行贝叶斯统计的书籍。

这本书和其他Think X系列书籍的想法一样,他们认为只要你知道如何编程,那么你就可以通过这项技能来学习其他的课题。

大多数的贝叶斯统计书籍会使用数学符号并且通过微积分一类的数学概念来展现其统计思想。这本书则使用Python代码、离散逼近而非数学、连续数学来解释贝叶斯统计。通过这样的方式,在数学书里的积分,将会转变为求和。许多在概率分布上的操作将会通过简单的循环而实现。

成为VIP会员查看完整内容
1
29

本书围绕虚拟化、并发和持久性这三个主要概念展开,介绍了所有现代系统的主要组件(包括调度、虚拟内存管理、磁盘和I/O子系统、文件系统)。全书共50章,分为3个部分,分别讲述虚拟化、并发和持久性的相关内容。作者以对话形式引入所介绍的主题概念,行文诙谐幽默却又鞭辟入里,力求帮助读者理解操作系统中虚拟化、并发和持久性的原理。本书内容全面,并给出了真实可运行的代码(而非伪代码),还提供了相应的练习,很适合高等院校相关专业的教师开展教学和高校学生进行自学。​

本书具有以下特色:

  • 主题突出,紧紧围绕操作系统的三大主题元素——虚拟化、并发和持久性。
  • 以对话的方式引入背景,提出问题,进而阐释原理,启发动手实践。
  • 包含众多“补充”和“提示”,拓展读者知识面,增加趣味性。
  • 使用真实代码而不是伪代码,让读者更加深入透彻地了解操作系统。
  • 提供作业、模拟和项目等众多学习方式,鼓励读者动手实践。
  • 为教师提供教学辅助资源。

成为VIP会员查看完整内容
0
42

这本书的前半部分快速而彻底地概述了Python的所有基础知识。你不需要任何以前的经验与编程开始,我们将教你一切你需要知道,一步一步。

第二部分着重于用Python以实用的方式解决有趣的、真实的问题。一旦你掌握了基础知识,你就会通过跟随我们的动手编程练习和项目迅速提高。

我们在书中的每一页都精心安排了漂亮的排版,代码示例的语法高亮显示,以及教学截图,这样你可以有效地处理和记忆信息:

所有材料都是Python 3.9的最新版本,Python编程语言在2020年发布的最新和最好的版本。简而言之,以下是你将学到的Python基础知识:Python 3的实用介绍:

安装和运行Python:在Windows、macOS或Linux上设置Python 3.9编码环境

  • 核心Python 3概念和约定:解释器会话、脚本、查找和修复代码bug、如何组织代码和构造Python程序、如何有效地学习和实践

  • Python 3.9基本原理:变量、基本数据类型、函数和循环、条件逻辑和控制流、字符串格式、列表/元组/字典、文件输入和输出、错误处理。

  • 中级Python概念:面向对象编程(OOP)、正则表达式、名称空间和作用域、异常处理、安装第三方包。

  • Python的实际使用:创建和修改PDF文件、使用数据库、从web下载和抓取内容、数据科学基础(科学计算和绘图)、图形用户界面和GUI编程。

成为VIP会员查看完整内容
0
38

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
92

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
118

简介:

科学专业人员可以通过本书学习Scikit-Learn库以及机器学习的基础知识。该书将Anaconda Python发行版与流行的Scikit-Learn库结合在一起,展示了各种有监督和无监督的机器学习算法。通过Python编写的清晰示例向读者介绍机器学习的原理,以及相关代码。

本书涵盖了掌握这些内容所需的所有应用数学和编程技能。不需要深入的面向对象编程知识,因为可以提供并说明完整的示例。必要时,编码示例很深入且很复杂。它们也简洁,准确,完整,是对引入的机器学习概念的补充。处理示例有助于建立理解和应用复杂机器学习算法所需的技能。

本书的学生将学习作为胜任力前提的基础知识。读者将了解专门为数据科学专业人员设计的Python Anaconda发行版,并将在流行的Scikit-Learn库中构建技能,该库是Python领域许多机器学习应用程序的基础。

本书内容包括:

  • 使用Scikit-Learn通用的简单和复杂数据集
  • 将数据处理为向量和矩阵以进行算法处理
  • 熟悉数据科学中使用的Anaconda发行版
  • 通过分类器,回归器和降维应用机器学习
  • 调整算法并为每个数据集找到最佳算法
  • 从CSV,JSON,Numpy和Pandas格式加载数据并保存

内容介绍:

这本书分为八章。 第1章介绍了机器学习,Anaconda和Scikit-Learn的主题。 第2章和第3章介绍算法分类。 第2章对简单数据集进行分类,第3章对复杂数据集进行分类。 第4章介绍了回归预测模型。 第5章和第6章介绍分类调整。 第5章调整简单数据集,第6章调整复杂数据集。 第7章介绍了预测模型回归调整。 第8章将所有知识汇总在一起,以整体方式审查和提出发现。

作者介绍:

David Paper博士是犹他州立大学管理信息系统系的教授。他写了两本书-商业网络编程:Oracle的PHP面向对象编程和Python和MongoDB的数据科学基础。他在诸如组织研究方法,ACM通讯,信息与管理,信息资源管理期刊,AIS通讯,信息技术案例与应用研究期刊以及远程计划等参考期刊上发表了70余篇论文。他还曾在多个编辑委员会担任过各种职务,包括副编辑。Paper博士还曾在德州仪器(TI),DLS,Inc.和凤凰城小型企业管理局工作。他曾为IBM,AT&T,Octel,犹他州交通运输部和空间动力实验室执行过IS咨询工作。 Paper博士的教学和研究兴趣包括数据科学,机器学习,面向对象的程序设计和变更管理。

目录:

成为VIP会员查看完整内容
0
57
小贴士
相关VIP内容
专知会员服务
61+阅读 · 1月8日
专知会员服务
28+阅读 · 2020年12月31日
专知会员服务
29+阅读 · 2020年12月29日
专知会员服务
42+阅读 · 2020年10月28日
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
92+阅读 · 2020年6月3日
专知会员服务
74+阅读 · 2020年5月2日
机器学习速查手册,135页pdf
专知会员服务
118+阅读 · 2020年3月15日
相关论文
Neha R. Gupta,Vittorio Orlandi,Chia-Rui Chang,Tianyu Wang,Marco Morucci,Pritam Dey,Thomas J. Howell,Xian Sun,Angikar Ghosal,Sudeepa Roy,Cynthia Rudin,Alexander Volfovsky
0+阅读 · 1月14日
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu,Yao Ma,Haochen Liu,Debayan Deb,Hui Liu,Jiliang Tang,Anil K. Jain
12+阅读 · 2019年10月9日
Text-to-Image Synthesis Based on Machine Generated Captions
Marco Menardi,Alex Falcon,Saida S. Mohamed,Lorenzo Seidenari,Giuseppe Serra,Alberto Del Bimbo,Carlo Tasso
3+阅读 · 2019年10月9日
code2seq: Generating Sequences from Structured Representations of Code
Uri Alon,Shaked Brody,Omer Levy,Eran Yahav
3+阅读 · 2019年2月6日
Marc Everett Johnson
3+阅读 · 2018年12月18日
Loris Bazzani,Tobias Domhan,Felix Hieber
3+阅读 · 2018年10月15日
Alexander Jung
9+阅读 · 2018年8月19日
Rajarshi Bhowmik,Gerard de Melo
4+阅读 · 2018年5月27日
Othman Sbai,Mohamed Elhoseiny,Antoine Bordes,Yann LeCun,Camille Couprie
3+阅读 · 2018年4月3日
Top