We prove that there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon code of length $n \leqslant q^2$ over ${\mathbb F}_{q^2}$ if and only if there is a polynomial $g \in {\mathbb F}_{q^2}$ of degree at most $(q-k)q-1$ such that $g+g^q$ has $q^2-n$ distinct zeros. This allows us to determine the smallest $n$ for which there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon code of length $n$ over ${\mathbb F}_{q^2}$, verifying a conjecture of Grassl and R\"otteler. We also provide examples of Hermitian self-orthogonal $k$-dimensional generalised Reed-Solomon codes of length $q^2+1$ over ${\mathbb F}_{q^2}$, for $k=q-1$ and $q$ an odd power of two.
翻译:我们证明,只有(q-k)美元最高为(q-k)美元,只有(q-k)美元的最高度为(q-k)美元,因此,美元+g-q美元为(q-k)美元有明显的零美元。这使我们能够确定一个最小的(美元)Reed-Solomon 代码,其长度为(美元)等于(leqslant q)2美元等于(mathbbf Fq)美元等于(mathbb Fáq)2美元等于(美元)美元等于(美元)等于(美元)等于(美元)等于(g-k)美元等于(g-k)美元等于(美元)等于(g-g)美元=(美元)等于(g)等于(g)美元等于(美元)等于(美元)等于(美元)等于(美元)等于(g)等于(美元)等于(美元)等于(美元)等于(美元)等于(美元=(美元)等于(美元)等于(美元=(q)等于(美元=(美元)等于(美元)等于(美元=(美元)等于(rq)等于(美元)等于(美元)等于(美元=(美元)等于(美元)