Despite the tremendous success of deep neural networks across various tasks, their vulnerability to imperceptible adversarial perturbations has hindered their deployment in the real world. Recently, works on randomized ensembles have empirically demonstrated significant improvements in adversarial robustness over standard adversarially trained (AT) models with minimal computational overhead, making them a promising solution for safety-critical resource-constrained applications. However, this impressive performance raises the question: Are these robustness gains provided by randomized ensembles real? In this work we address this question both theoretically and empirically. We first establish theoretically that commonly employed robustness evaluation methods such as adaptive PGD provide a false sense of security in this setting. Subsequently, we propose a theoretically-sound and efficient adversarial attack algorithm (ARC) capable of compromising random ensembles even in cases where adaptive PGD fails to do so. We conduct comprehensive experiments across a variety of network architectures, training schemes, datasets, and norms to support our claims, and empirically establish that randomized ensembles are in fact more vulnerable to $\ell_p$-bounded adversarial perturbations than even standard AT models. Our code can be found at https://github.com/hsndbk4/ARC.


翻译:尽管深厚的神经网络在各种任务中取得了巨大成功,但它们在不可察觉的对抗性扰动面前的脆弱性阻碍了它们在现实世界中的部署。最近,随机拼凑组合的工作在经验上表明,对标准对抗性训练(AT)模型的对抗性强健性方面有了显著改进,尽量减少计算间接费用,使这些模型成为对安全-关键资源限制的应用的有希望的解决办法。然而,这种令人印象深刻的绩效提出了这样一个问题:这些强健性收益是否由随机拼凑的团团团所提供,是真实的吗?在这项工作中,我们从理论上和经验上处理这个问题。我们首先从理论上确定,通常采用的强健性评价方法,如适应性PGD, 提供了一种虚假的安全感。随后,我们提出了一种在理论上健全而高效的对抗性攻击算法(ARC),即使在适应性的PGD没有这样做的情况下,也能损害随机的组合。我们从各种网络结构、培训计划、数据集和规范中进行了全面试验,从经验上确定随机拼凑的团团体事实上更易受到$_p$p$-bbbrbrbalbalalal-altialact amaltialact comactaltialtiquestation as alogisationationationationations acudes accup 而不是我们在标准准则可找到找到找到找到找到。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员