Panel Vector Autoregressions (PVARs) are a popular tool for analyzing multi-country datasets. However, the number of estimated parameters can be enormous, leading to computational and statistical issues. In this paper, we develop fast Bayesian methods for estimating PVARs using integrated rotated Gaussian approximations. We exploit the fact that domestic information is often more important than international information and group the coefficients accordingly. Fast approximations are used to estimate the latter while the former are estimated with precision using Markov chain Monte Carlo techniques. We illustrate, using a huge model of the world economy, that it produces competitive forecasts quickly.
翻译:面板矢量自动递减(PVARs)是分析多国数据集的常用工具,不过,估计参数的数量可能很多,导致计算和统计问题。在本文件中,我们利用综合旋转的高斯近似值制定快速的贝叶斯方法来估计PVARs。我们利用国内信息往往比国际信息更重要,并相应地将系数分组。使用快速近似值来估计后者,而前者则使用Markov连锁Monte Carlo技术精确地估算。我们用世界经济的庞大模型来说明它迅速产生有竞争力的预测。