In data science, determining proximity between observations is critical to many downstream analyses such as clustering, information retrieval and classification. However, when the underlying structure of the data probability space is unclear, the function used to compute similarity between data points is often arbitrarily chosen. Here, we present a novel concept of proximity, Semblance, that uses the empirical distribution across all observations to inform the similarity between each pair. The advantage of Semblance lies in its distribution free formulation and its ability to detect niche features by placing greater emphasis on similarity between observation pairs that fall at the outskirts of the data distribution, as opposed to those that fall towards the center. We prove that Semblance is a valid Mercer kernel, thus allowing its principled use in kernel based learning machines. Semblance can be applied to any data modality, and we demonstrate its consistently improved performance against conventional methods through simulations and three real case studies from very different applications, viz. cell type classification using single cell RNA sequencing, selecting predictors of positive return on real estate investments, and image compression.


翻译:在数据科学方面,确定观测之间的接近性对于诸如集群、信息检索和分类等许多下游分析至关重要。然而,当数据概率空间的基本结构不明确时,用来计算数据点之间相似性的功能往往被任意选择。在这里,我们提出了一个关于接近性(Semblance)的新概念,即“Semblance”,它利用所有观测的实验性分布来说明每一对观测的相似性。“Semblance”的优势在于它的分布自由配制,以及它通过更多地强调数据分布边缘的观测对对的相似性,而不是流向中心的观测对等,从而能够探测其独特性特征。我们证明“Semblance”是一种有效的Mercer内核,因此允许其在以内核为基础的学习机器中有原则地使用。“Semblance”可以应用于任何数据模式,我们通过模拟和从非常不同的应用中的三个实际案例研究,即使用单细胞RNA测序、选择房地产投资正回报预测器和图像压缩来显示其业绩的一贯提高。

0
下载
关闭预览

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Top
微信扫码咨询专知VIP会员