We propose a new discretization of the mirror-Langevin diffusion and give a crisp proof of its convergence. Our analysis uses relative convexity/smoothness and self-concordance, ideas which originated in convex optimization, together with a new result in optimal transport that generalizes the displacement convexity of the entropy. Unlike prior works, our result both (1) requires much weaker assumptions on the mirror map and the target distribution, and (2) has vanishing bias as the step size tends to zero. In particular, for the task of sampling from a log-concave distribution supported on a compact set, our theoretical results are significantly better than the existing guarantees.
翻译:我们建议对镜像- Langevin 扩散进行新的分解,并给出其趋同的精确证明。 我们的分析使用了相对的顺流/顺流和自相调和,这些想法起源于顺流优化,同时产生了一种优化运输的新型结果,它概括了导流的偏移共性。 与先前的工程不同,我们的结果 (1) 要求对镜像地图和目标分布的假设要弱得多, (2) 已经消除了偏差,因为步骤大小往往为零。 特别是,对于由一组契约所支持的对日志通道分布的取样任务,我们的理论结果比现有的保证要好得多。