An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.


翻译:为了节省计算成本,大多数现有的NAS算法经常在一个有限的培训时代的小型代用数据集中训练和评价中间神经结构。但很难期望以如此粗糙的评价方式准确估计一个结构的性能。本文主张一个新的神经结构评价计划,其目的是确定哪个结构将更好地运作,而不是准确预测绝对建筑绩效。因此,我们提议在NAS(RENAS)中设置一个计算成本预测器。我们将神经结构编码成特性强器,并进一步完善与预测器的表述。拟议的相对性性性能预测器可以在不进行额外评估的情况下被分散地用于搜索所需的结构。NAS-Bench-101数据集的实验结果表明,抽样424美元(整个搜索空间的0.1美元)神经结构及其相应的验证性能已经足以学习准确的结构性能预测器。我们搜索型神经结构的搜索型预测法和高级神经系统系统系统系统系统系统系统系统显示,搜索型神经系统系统系统系统系统结构的搜索方法比国家神经系统系统系统系统系统系统系统系统系统系统系统更优先的系统。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员